Suppr超能文献

无细胞合成生物化学将乙醇转化为 1,3-丁二醇。

Cell-free synthetic biochemistry upgrading of ethanol to 1,3 butanediol.

机构信息

Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA.

出版信息

Sci Rep. 2021 May 3;11(1):9449. doi: 10.1038/s41598-021-88899-w.

Abstract

It is now possible to efficiently fix flue gas CO/CO into ethanol using acetogens, thereby making carbon negative ethanol. While the ethanol could be burned as a fuel, returning the CO to the atmosphere, it might also be possible to use the fixed carbon in more diverse chemicals, thereby keeping it fixed. Here we describe a simple synthetic biochemistry approach for converting carbon negative ethanol into the synthetic building block chemical 1,3 butanediol (1,3-BDO). The pathway completely conserves carbon from ethanol and can ultimately be powered electrochemically via formate oxidation. Our proof-of-principle system reached a maximum productivity of 0.16 g/L/h and, with replenishment of feedstock and enzymes, achieved a titer of 7.7 g/L. We identify a number of elements that can be addressed in future work to improve both cell-free and cell-based production of 1,3-BDO.

摘要

现在可以利用产乙酸菌有效地将烟道气中的 CO/CO2 固定为乙醇,从而生产出负碳乙醇。虽然乙醇可以作为燃料燃烧,将 CO 释放回大气中,但也有可能将固定的碳用于更具多样性的化学物质中,从而将其固定下来。在这里,我们描述了一种将负碳乙醇转化为合成砌块化学品 1,3-丁二醇(1,3-BDO)的简单合成生物化学方法。该途径完全从乙醇中保留了碳,并且最终可以通过甲酸氧化进行电化学供能。我们的原理验证系统达到了 0.16 g/L/h 的最大生产力,并且通过补充原料和酶,实现了 7.7 g/L 的产量。我们确定了一些可以在未来工作中解决的要素,以提高 1,3-BDO 的无细胞和基于细胞的生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efdd/8093283/cf7b0d402e5b/41598_2021_88899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验