Suppr超能文献

遗传背景和衰老对费希尔344大鼠、挪威棕色大鼠以及费希尔344×挪威棕色大鼠杂交种大鼠肠系膜侧支生长能力的影响。

Impact of genetic background and aging on mesenteric collateral growth capacity in Fischer 344, Brown Norway, and Fischer 344 x Brown Norway hybrid rats.

作者信息

Sheridan Kevin M, Ferguson Michael J, Distasi Matthew R, Witzmann Frank A, Dalsing Michael C, Miller Steven J, Unthank Joseph L

机构信息

Department of Surgery, Indiana University School of Medicine, University Medical Center, 1001 W. 10th Street, Indianapolis, IN 46202-2879, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3498-505. doi: 10.1152/ajpheart.00040.2007. Epub 2007 Sep 28.

Abstract

Available studies indicate that both genetic background and aging influence collateral growth capacity, but it is not known how their combination affects collateral growth. We evaluated collateral growth induced by ileal artery ligation in Fischer 344 (F344), Brown Norway (BN), and the first generation hybrid of F344 x BN (F1) rats available for aging research from the National Institute on Aging. Collateral growth was determined by paired diameter measurements in anesthetized rats immediately and 7 days postligation. In 3-mo-old rats, significant collateral growth occurred only in BN (35% +/- 11%, P < 0.001). The endothelial cell number in arterial cross sections was also determined, since this precedes shear-mediated luminal expansion. When compared with the same animal controls, the intimal cell number was increased only in BN rats (92% +/- 21%, P < 0.001). The increase in intimal cell number and the degree of collateral luminal expansion in BN rats was not affected by age from 3 to 24 mo. Immunohistochemical studies demonstrated that intimal cell proliferation was much greater in the collaterals of BN than of F1 rats. The remarkable difference between these three strains of rats used in aging research and the lack of an age-related impairment in the BN rats are novel observations. These rat strains mimic clinical observations of interindividual variation in collateral growth capacity and the impact of age on arteriogenesis and should be useful models to investigate the molecular mechanisms responsible for such differences.

摘要

现有研究表明,遗传背景和衰老都会影响侧支生长能力,但它们的共同作用如何影响侧支生长尚不清楚。我们评估了来自美国国立衰老研究所的可用于衰老研究的Fischer 344(F344)大鼠、棕色挪威(BN)大鼠以及F344×BN第一代杂交(F1)大鼠回肠动脉结扎诱导的侧支生长。通过在麻醉大鼠结扎后即刻及7天时测量配对血管直径来确定侧支生长情况。在3月龄大鼠中,仅BN大鼠出现了显著的侧支生长(35%±11%,P<0.001)。还测定了动脉横截面中的内皮细胞数量,因为这先于剪切力介导的管腔扩张。与同一动物的对照相比,仅BN大鼠的内膜细胞数量增加(92%±21%,P<0.001)。BN大鼠内膜细胞数量的增加以及侧支管腔扩张程度在3至24月龄时不受年龄影响。免疫组织化学研究表明,BN大鼠侧支中的内膜细胞增殖比F1大鼠的要多得多。衰老研究中使用的这三种大鼠品系之间的显著差异以及BN大鼠中不存在与年龄相关的损伤是新的观察结果。这些大鼠品系模拟了侧支生长能力个体间差异以及年龄对动脉生成影响的临床观察结果,应该是研究造成此类差异的分子机制有用的模型。

相似文献

1
Impact of genetic background and aging on mesenteric collateral growth capacity in Fischer 344, Brown Norway, and Fischer 344 x Brown Norway hybrid rats.
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3498-505. doi: 10.1152/ajpheart.00040.2007. Epub 2007 Sep 28.
2
Antioxidants reverse age-related collateral growth impairment.
J Vasc Res. 2010;47(2):108-14. doi: 10.1159/000235965. Epub 2009 Sep 4.
3
Behavioral assessment of aging in male Fischer 344 and brown Norway rat strains and their F1 hybrid.
Neurobiol Aging. 1994 May-Jun;15(3):319-28. doi: 10.1016/0197-4580(94)90027-2.
5
Involvement of MMPs in the outward remodeling of collateral mesenteric arteries.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2429-37. doi: 10.1152/ajpheart.00100.2007. Epub 2007 Jul 20.
6
Wall remodeling during luminal expansion of mesenteric arterial collaterals in the rat.
Circ Res. 1996 Nov;79(5):1015-23. doi: 10.1161/01.res.79.5.1015.
8
Diaphragm muscle sarcopenia in Fischer 344 and Brown Norway rats.
Exp Physiol. 2016 Jul 1;101(7):883-94. doi: 10.1113/EP085703. Epub 2016 Jun 8.
9
Selected contribution: Bone adaptation with aging and long-term caloric restriction in Fischer 344 x Brown-Norway F1-hybrid rats.
J Appl Physiol (1985). 2003 Oct;95(4):1739-45. doi: 10.1152/japplphysiol.00079.2003. Epub 2003 Jun 13.
10
Age-related changes in orolingual motor function in F344 vs F344/BN rats.
Physiol Behav. 2008 Feb 27;93(3):461-6. doi: 10.1016/j.physbeh.2007.10.004. Epub 2007 Oct 12.

引用本文的文献

1
Molecular controls of arterial morphogenesis.
Circ Res. 2015 May 8;116(10):1712-24. doi: 10.1161/CIRCRESAHA.116.302953.
3
Exercise training and peripheral arterial disease.
Compr Physiol. 2012 Oct;2(4):2933-3017. doi: 10.1002/cphy.c110065.
4
Post-transcriptional regulation of placenta growth factor mRNA by hydrogen peroxide.
Microvasc Res. 2012 Sep;84(2):155-60. doi: 10.1016/j.mvr.2012.05.009. Epub 2012 Jun 5.
5
Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues.
Arterioscler Thromb Vasc Biol. 2011 Aug;31(8):1748-56. doi: 10.1161/ATVBAHA.111.227314. Epub 2011 May 26.
6
Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion.
Microcirculation. 2010 Jan;17(1):3-20. doi: 10.1111/j.1549-8719.2010.00008.x.
8
Abnormal nitric oxide production in aged rat mesenteric arteries is mediated by NAD(P)H oxidase-derived peroxide.
Am J Physiol Heart Circ Physiol. 2009 Dec;297(6):H2227-33. doi: 10.1152/ajpheart.00325.2009. Epub 2009 Sep 25.
9
Antioxidants reverse age-related collateral growth impairment.
J Vasc Res. 2010;47(2):108-14. doi: 10.1159/000235965. Epub 2009 Sep 4.
10
Suppressed hindlimb perfusion in Rac2-/- and Nox2-/- mice does not result from impaired collateral growth.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H877-86. doi: 10.1152/ajpheart.00772.2008. Epub 2009 Jan 16.

本文引用的文献

1
Involvement of MMPs in the outward remodeling of collateral mesenteric arteries.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2429-37. doi: 10.1152/ajpheart.00100.2007. Epub 2007 Jul 20.
2
The role of the renin-angiotensin system and oxidative stress in spontaneously hypertensive rat mesenteric collateral growth impairment.
Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2523-31. doi: 10.1152/ajpheart.01296.2006. Epub 2007 Feb 2.
3
Interanimal variability in preexisting collaterals is a major factor determining outcome in experimental angiogenesis trials.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1891-7. doi: 10.1152/ajpheart.00537.2006. Epub 2006 Dec 22.
4
Humoral and cellular factors responsible for coronary collateral formation.
Am J Cardiol. 2006 Nov 1;98(9):1194-7. doi: 10.1016/j.amjcard.2006.05.046. Epub 2006 Aug 31.
5
Transcriptional profiling in coronary artery disease: indications for novel markers of coronary collateralization.
Circulation. 2006 Oct 24;114(17):1811-20. doi: 10.1161/CIRCULATIONAHA.106.628396. Epub 2006 Oct 16.
6
Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall.
Arterioscler Thromb Vasc Biol. 2006 Jul;26(7):1503-9. doi: 10.1161/01.ATV.0000225777.58488.f2. Epub 2006 May 11.
7
Impact of mouse strain differences in innate hindlimb collateral vasculature.
Arterioscler Thromb Vasc Biol. 2006 Mar;26(3):520-6. doi: 10.1161/01.ATV.0000202677.55012.a0. Epub 2006 Jan 5.
8
Effect of hypertension on angiotensin-(1-7) levels in rats with different angiotensin-I converting enzyme polymorphism.
Life Sci. 2006 Feb 28;78(14):1535-42. doi: 10.1016/j.lfs.2005.07.026. Epub 2005 Oct 17.
9
Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia.
Circulation. 2005 May 10;111(18):2347-55. doi: 10.1161/01.CIR.0000164261.62586.14. Epub 2005 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验