Suppr超能文献

分析治疗学的比较有效性和安全性研究中部分缺失的混杂因素信息。

Analyzing partially missing confounder information in comparative effectiveness and safety research of therapeutics.

机构信息

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2012 May;21 Suppl 2(0 2):13-20. doi: 10.1002/pds.3248.

Abstract

PURPOSE

Electronic healthcare databases are commonly used in comparative effectiveness and safety research of therapeutics. Many databases now include additional confounder information in a subset of the study population through data linkage or data collection. We described and compared existing methods for analyzing such datasets.

METHODS

Using data from The Health Improvement Network and the relation between non-steroidal anti-inflammatory drugs and upper gastrointestinal bleeding as an example, we employed several methods to handle partially missing confounder information.

RESULTS

The crude odds ratio (OR) of upper gastrointestinal bleeding was 1.50 (95% confidence interval: 0.98, 2.28) among selective cyclo-oxygenase-2 inhibitor initiators (n = 43 569) compared with traditional non-steroidal anti-inflammatory drug initiators (n = 411 616). The OR dropped to 0.81 (0.52, 1.27) upon adjustment for confounders recorded for all patients. When further considering three additional variables missing in 22% of the study population (smoking, alcohol consumption, body mass index), the OR was between 0.80 and 0.83 for the missing-category approach, the missing-indicator approach, single imputation by the most common category, multiple imputation by chained equations, and propensity score calibration. The OR was 0.65 (0.39, 1.09) and 0.67 (0.38, 1.16) for the unweighted and the inverse probability weighted complete-case analysis, respectively.

CONCLUSIONS

Existing methods for handling partially missing confounder data require different assumptions and may produce different results. The unweighted complete-case analysis, the missing-category/indicator approach, and single imputation require often unrealistic assumptions and should be avoided. In this study, differences across methods were not substantial, likely due to relatively low proportion of missingness and weak confounding effect by the three additional variables upon adjustment for other variables.

摘要

目的

电子医疗数据库常用于治疗方法的疗效和安全性的比较研究。许多数据库现在通过数据链接或数据收集,在研究人群的一部分中包含了额外的混杂因素信息。我们描述并比较了分析此类数据集的现有方法。

方法

使用来自健康改善网络的数据和非甾体抗炎药与上消化道出血之间的关系作为示例,我们采用了几种方法来处理部分缺失混杂因素信息。

结果

选择性环氧化酶-2 抑制剂使用者(n=43569)与传统非甾体抗炎药使用者(n=411616)相比,上消化道出血的粗比值比(OR)为 1.50(95%置信区间:0.98,2.28)。当调整所有患者记录的混杂因素后,OR 降至 0.81(0.52,1.27)。当进一步考虑到研究人群中 22%缺失的三个额外变量(吸烟、饮酒、体重指数)时,缺失类别法、缺失指标法、最常见类别单值插补、链式方程多重插补和倾向评分校准的 OR 分别在 0.80 到 0.83 之间。未加权和逆概率加权完全病例分析的 OR 分别为 0.65(0.39,1.09)和 0.67(0.38,1.16)。

结论

处理部分缺失混杂因素数据的现有方法需要不同的假设,并且可能产生不同的结果。未加权完全病例分析、缺失类别/指标法和单值插补需要经常不切实际的假设,应避免使用。在这项研究中,不同方法之间的差异不大,这可能是由于缺失率相对较低,并且在调整其他变量后,三个额外变量的混杂作用较弱。

相似文献

1
Analyzing partially missing confounder information in comparative effectiveness and safety research of therapeutics.
Pharmacoepidemiol Drug Saf. 2012 May;21 Suppl 2(0 2):13-20. doi: 10.1002/pds.3248.
2
Confounding adjustment via a semi-automated high-dimensional propensity score algorithm: an application to electronic medical records.
Pharmacoepidemiol Drug Saf. 2011 Aug;20(8):849-57. doi: 10.1002/pds.2152. Epub 2011 Jun 30.
6
Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information.
Med Care. 2007 Oct;45(10 Supl 2):S158-65. doi: 10.1097/MLR.0b013e318070c045.
7
Generating and evaluating a propensity model using textual features from electronic medical records.
PLoS One. 2019 Mar 4;14(3):e0212999. doi: 10.1371/journal.pone.0212999. eCollection 2019.
8
Performance of Multiple Imputation Using Modern Machine Learning Methods in Electronic Health Records Data.
Epidemiology. 2023 Mar 1;34(2):206-215. doi: 10.1097/EDE.0000000000001578. Epub 2022 Dec 9.
10
Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data.
Stat Med. 2013 Dec 10;32(28):4890-905. doi: 10.1002/sim.5894. Epub 2013 Jul 16.

引用本文的文献

3
A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records.
Clin Epidemiol. 2024 May 21;16:329-343. doi: 10.2147/CLEP.S436131. eCollection 2024.
4
Methods for external control groups for single arm trials or long-term uncontrolled extensions to randomized clinical trials.
Pharmacoepidemiol Drug Saf. 2020 Nov;29(11):1382-1392. doi: 10.1002/pds.5141. Epub 2020 Oct 4.
6
Early Menstrual Factors Are Associated with Adulthood Cardio-Metabolic Health in a Survey of Mexican Teachers.
Matern Child Health J. 2019 Mar;23(3):356-368. doi: 10.1007/s10995-018-2650-7.
8
Making fair comparisons in pregnancy medication safety studies: An overview of advanced methods for confounding control.
Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):140-147. doi: 10.1002/pds.4336. Epub 2017 Oct 17.
9
Handling missing data in propensity score estimation in comparative effectiveness evaluations: a systematic review.
J Comp Eff Res. 2018 Mar;7(3):271-279. doi: 10.2217/cer-2017-0071. Epub 2017 Oct 5.

本文引用的文献

1
Medication Exposure in Pregnancy Risk Evaluation Program.
Matern Child Health J. 2012 Oct;16(7):1349-54. doi: 10.1007/s10995-011-0902-x.
2
Confounding adjustment via a semi-automated high-dimensional propensity score algorithm: an application to electronic medical records.
Pharmacoepidemiol Drug Saf. 2011 Aug;20(8):849-57. doi: 10.1002/pds.2152. Epub 2011 Jun 30.
3
Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example.
J Clin Epidemiol. 2010 Jul;63(7):728-36. doi: 10.1016/j.jclinepi.2009.08.028. Epub 2010 Mar 25.
4
Issues in multiple imputation of missing data for large general practice clinical databases.
Pharmacoepidemiol Drug Saf. 2010 Jun;19(6):618-26. doi: 10.1002/pds.1934.
5
Causal inference from longitudinal studies with baseline randomization.
Int J Biostat. 2008 Oct 19;4(1):Article 22. doi: 10.2202/1557-4679.1117.
6
Linking inpatient clinical registry data to Medicare claims data using indirect identifiers.
Am Heart J. 2009 Jun;157(6):995-1000. doi: 10.1016/j.ahj.2009.04.002.
9
Primer: administrative health databases in observational studies of drug effects--advantages and disadvantages.
Nat Clin Pract Rheumatol. 2007 Dec;3(12):725-32. doi: 10.1038/ncprheum0652.
10
Medicaid, Medicare, and the Michigan Tumor Registry: a linkage strategy.
Med Decis Making. 2007 Jul-Aug;27(4):352-63. doi: 10.1177/0272989X07302129. Epub 2007 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验