Suppr超能文献

使用自然语言处理和受控术语进行用药核对。

Medication reconciliation using natural language processing and controlled terminologies.

作者信息

Cimino James J, Bright Tiffani J, Li Jianhua

机构信息

Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.

出版信息

Stud Health Technol Inform. 2007;129(Pt 1):679-83.

Abstract

Medication reconciliation (MR) is a process that seeks to assure that the medications a patient is supposed to take are the same as what they are actually taking. We have developed a method in which medication information (consisting of both coded data and narrative text) is extracted from twelve sources from two clinical information systems and assembled into a chronological sequence of medication history, plans, and orders that correspond to periods before, during and after a hospital admission. We use natural language processing, a controlled terminology, and a medication classification system to create matrices that can be used to determine the initiation, changes and discontinuation of medications over time. We applied the process to a set of 17 patient records and successfully abstracted and summarized the medication data. This approach has implications for efforts to improve medication history-taking, order entry, and automated auditing of patient records for quality assurance.

摘要

用药核对(MR)是一个旨在确保患者应服用的药物与其实际服用的药物一致的过程。我们开发了一种方法,从两个临床信息系统的十二个来源中提取用药信息(包括编码数据和叙述性文本),并将其汇编成与住院前、住院期间和住院后时间段相对应的用药史、计划和医嘱的时间顺序。我们使用自然语言处理、受控术语和用药分类系统来创建矩阵,这些矩阵可用于确定随时间推移药物的起始、变化和停用情况。我们将该过程应用于一组17份患者记录,并成功提取和总结了用药数据。这种方法对改善用药史记录、医嘱录入以及为质量保证对患者记录进行自动审核的工作具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验