Suppr超能文献

从临床叙述中学习检测和理解药物停用事件。

Learning to detect and understand drug discontinuation events from clinical narratives.

机构信息

Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Bedford VA Medical Center, Bedford, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2019 Oct 1;26(10):943-951. doi: 10.1093/jamia/ocz048.

Abstract

OBJECTIVE

Identifying drug discontinuation (DDC) events and understanding their reasons are important for medication management and drug safety surveillance. Structured data resources are often incomplete and lack reason information. In this article, we assessed the ability of natural language processing (NLP) systems to unlock DDC information from clinical narratives automatically.

MATERIALS AND METHODS

We collected 1867 de-identified providers' notes from the University of Massachusetts Medical School hospital electronic health record system. Then 2 human experts chart reviewed those clinical notes to annotate DDC events and their reasons. Using the annotated data, we developed and evaluated NLP systems to automatically identify drug discontinuations and reasons at the sentence level using a novel semantic enrichment-based vector representation (SEVR) method for enhanced feature representation.

RESULTS

Our SEVR-based NLP system achieved the best performance of 0.785 (AUC-ROC) for detecting discontinuation events and 0.745 (AUC-ROC) for identifying reasons when testing this highly imbalanced data, outperforming 2 state-of-the-art non-SEVR-based models. Compared with a rule-based baseline system for discontinuation detection, our system improved the sensitivity significantly (57.75% vs 18.31%, absolute value) while retaining a high specificity of 99.25%, leading to a significant improvement in AUC-ROC by 32.83% (absolute value).

CONCLUSION

Experiments have shown that a high-performance NLP system can be developed to automatically identify DDCs and their reasons from providers' notes. The SEVR model effectively improved the system performance showing better generalization and robustness on unseen test data. Our work is an important step toward identifying reasons for drug discontinuation that will inform drug safety surveillance and pharmacovigilance.

摘要

目的

识别药物停药(DDC)事件并了解其原因对于药物管理和药物安全监测非常重要。结构化数据资源通常不完整且缺乏原因信息。本文评估了自然语言处理(NLP)系统从临床叙述中自动解锁 DDC 信息的能力。

材料和方法

我们从马萨诸塞大学医学院医院电子健康记录系统中收集了 1867 份去标识提供者的笔记。然后,2 名人类专家图表回顾了这些临床笔记,以注释 DDC 事件及其原因。使用注释数据,我们开发并评估了 NLP 系统,使用一种新的基于语义丰富的向量表示(SEVR)方法在句子级别自动识别药物停药和原因,用于增强特征表示。

结果

我们的基于 SEVR 的 NLP 系统在测试这种高度不平衡的数据时,在检测停药事件方面的最佳性能为 0.785(AUC-ROC),在识别原因方面的最佳性能为 0.745(AUC-ROC),优于 2 个基于非 SEVR 的最先进模型。与基于规则的停药检测基线系统相比,我们的系统显著提高了敏感性(57.75%比 18.31%,绝对值),同时保持了 99.25%的高特异性,导致 AUC-ROC 显著提高 32.83%(绝对值)。

结论

实验表明,可以开发高性能的 NLP 系统从提供者的笔记中自动识别 DDC 和其原因。SEVR 模型有效地提高了系统性能,在未见过的测试数据上表现出更好的泛化和鲁棒性。我们的工作是识别药物停药原因的重要一步,这将为药物安全监测和药物警戒提供信息。

相似文献

引用本文的文献

10
A Year of Papers Using Biomedical Texts.一年来使用生物医学文本的论文。
Yearb Med Inform. 2020 Aug;29(1):221-225. doi: 10.1055/s-0040-1701997. Epub 2020 Aug 21.

本文引用的文献

3
Shared Risk Factors in Cardiovascular Disease and Cancer.心血管疾病和癌症的共同风险因素。
Circulation. 2016 Mar 15;133(11):1104-14. doi: 10.1161/CIRCULATIONAHA.115.020406.
5
Using primary care prescribing databases for pharmacovigilance.利用初级保健处方数据库进行药物警戒。
Br J Clin Pharmacol. 2011 Feb;71(2):244-9. doi: 10.1111/j.1365-2125.2010.03816.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验