Dubuc Réjean, Brocard Frédéric, Antri Myriam, Fénelon Karine, Gariépy Jean-François, Smetana Roy, Ménard Ariane, Le Ray Didier, Viana Di Prisco Gonzalo, Pearlstein Edouard, Sirota Mikhail G, Derjean Dominique, St-Pierre Melissa, Zielinski Barbara, Auclair François, Veilleux Danielle
Département de kinanthropologie, Université du Québec à Montréal, Case postale 8888, succursale Centre-ville, Montréal, (Québec), Canada H3C 3P8.
Brain Res Rev. 2008 Jan;57(1):172-82. doi: 10.1016/j.brainresrev.2007.07.016. Epub 2007 Aug 22.
The spinal circuitry underlying the generation of basic locomotor synergies has been described in substantial detail in lampreys and the cellular mechanisms have been identified. The initiation of locomotion, on the other hand, relies on supraspinal networks and the cellular mechanisms involved are only beginning to be understood. This review examines some of the findings relative to the neural mechanisms involved in the initiation of locomotion of lampreys. Locomotion can be elicited by sensory stimulation or by internal cues associated with fundamental needs of the animal such as food seeking, exploration, and mating. We have described mechanisms by which escape swimming is elicited in lampreys in response to mechanical skin stimulation. A rather simple neural connectivity is involved, including sensory and relay neurons, as well as the brainstem rhombencephalic reticulospinal cells, which act as command neurons. We have shown that reticulospinal cells have intrinsic membrane properties that allow them to transform a short duration sensory input into a long-lasting excitatory command that activates the spinal locomotor networks. These mechanisms constitute an important feature for the activation of escape swimming. Other sensory inputs can also elicit locomotion in lampreys. For instance, we have recently shown that olfactory signals evoke sustained depolarizations in reticulospinal neurons and chemical activation of the olfactory bulbs with local injections of glutamate induces fictive locomotion. The mechanisms by which internal cues initiate locomotion are less understood. Our research has focused on one particular locomotor center in the brainstem, the mesencephalic locomotor region (MLR). The MLR is believed to channel inputs from many brain regions to generate goal-directed locomotion. It activates reticulospinal cells to elicit locomotor output in a graded fashion contrary to escape locomotor bouts, which are all-or-none. MLR inputs to reticulospinal cells use both glutamatergic and cholinergic transmission; nicotinic receptors on reticulospinal cells are involved. MLR excitatory inputs to reticulospinal cells in the middle (MRRN) are larger than those in the posterior rhombencephalic reticular nucleus (PRRN). Moreover at low stimulation strength, reticulospinal cells in the MRRN are activated first, whereas those in the PRRN require stronger stimulation strengths. The output from the MLR on one side activates reticulospinal neurons on both sides in a highly symmetrical fashion. This could account for the symmetrical bilateral locomotor output evoked during unilateral stimulation of the MLR in all animal species tested to date. Interestingly, muscarinic receptor activation reduces sensory inputs to reticulospinal neurons and, under natural conditions, the activation of MLR cholinergic neurons will likely reduce sensory inflow. Moreover, exposing the brainstem to muscarinic agonists generates sustained recurring depolarizations in reticulospinal neurons through pre-reticular effects. Cells in the caudal half of the rhombencephalon appear to be involved and we propose that the activation of these muscarinoceptive cells could provide additional excitation to reticulospinal cells when the MLR is activated under natural conditions. One important question relates to sources of inputs to the MLR. We found that substance P excites the MLR, whereas GABA inputs tonically maintain the MLR inhibited and removal of this inhibition initiates locomotion. Other locomotor centers exist such as a region in the ventral thalamus projecting directly to reticulospinal cells. This region, referred to as the diencephalic locomotor region, receives inputs from several areas in the forebrain and is likely important for goal-directed locomotion. In summary, this review focuses on the most recent findings relative to initiation of lamprey locomotion in response to sensory and internal cues in lampreys.
在七鳃鳗中,产生基本运动协同作用的脊髓回路已得到相当详细的描述,其细胞机制也已被确定。另一方面,运动的启动依赖于脊髓上网络,而其中涉及的细胞机制才刚刚开始被理解。这篇综述探讨了一些与七鳃鳗运动启动所涉及的神经机制相关的研究发现。运动可以由感觉刺激或与动物基本需求相关的内部线索引发,比如觅食、探索和交配。我们已经描述了七鳃鳗在受到机械性皮肤刺激时引发逃避游泳的机制。这涉及一种相当简单的神经连接,包括感觉神经元和中继神经元,以及作为指令神经元的脑干后脑网状脊髓细胞。我们已经表明,网状脊髓细胞具有内在的膜特性,使它们能够将短时间的感觉输入转化为持久的兴奋性指令,从而激活脊髓运动网络。这些机制是激活逃避游泳的一个重要特征。其他感觉输入也能在七鳃鳗中引发运动。例如,我们最近表明,嗅觉信号会引起网状脊髓神经元持续去极化,通过在嗅球局部注射谷氨酸进行化学激活会诱发虚构运动。内部线索启动运动的机制则了解较少。我们的研究聚焦于脑干中一个特定的运动中枢,即中脑运动区(MLR)。MLR被认为整合来自许多脑区的输入,以产生目标导向的运动。与全或无的逃避运动发作不同,它以分级的方式激活网状脊髓细胞以引发运动输出。MLR向网状脊髓细胞的输入同时使用谷氨酸能和胆碱能传递;网状脊髓细胞上的烟碱受体参与其中。MLR对中间网状脊髓核(MRRN)中网状脊髓细胞的兴奋性输入大于对后脑后网状核(PRRN)中网状脊髓细胞的输入。此外,在低刺激强度下,MRRN中的网状脊髓细胞首先被激活,而PRRN中的那些细胞则需要更强的刺激强度。一侧MLR的输出以高度对称的方式激活两侧的网状脊髓神经元。这可以解释在迄今为止测试的所有动物物种中,单侧刺激MLR时诱发的对称双侧运动输出。有趣的是,毒蕈碱受体激活会减少向网状脊髓神经元的感觉输入,在自然条件下,MLR胆碱能神经元的激活可能会减少感觉传入。此外,将脑干暴露于毒蕈碱激动剂会通过网状前效应在网状脊髓神经元中产生持续反复的去极化。后脑尾侧半的细胞似乎参与其中,我们提出,当在自然条件下激活MLR时,这些毒蕈碱感受性细胞的激活可以为网状脊髓细胞提供额外的兴奋。一个重要的问题与MLR的输入来源有关。我们发现P物质会兴奋MLR,而GABA输入则持续维持MLR处于抑制状态,去除这种抑制会启动运动。还存在其他运动中枢,比如腹侧丘脑的一个区域直接投射到网状脊髓细胞。这个区域被称为间脑运动区,它从前脑的几个区域接收输入,可能对目标导向的运动很重要。总之,这篇综述聚焦于七鳃鳗运动启动的最新研究发现,这些发现涉及七鳃鳗对感觉和内部线索的反应。