Suppr超能文献

作为应激反应的突变与进化能力的调控。

Mutation as a stress response and the regulation of evolvability.

作者信息

Galhardo Rodrigo S, Hastings P J, Rosenberg Susan M

机构信息

Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA.

出版信息

Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):399-435. doi: 10.1080/10409230701648502.

Abstract

Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.

摘要

我们对于稳定基因组的概念正在演变为一种基因组具有可塑性且能对环境变化做出反应的概念。越来越多的证据表明,各种环境压力会在细菌、酵母和人类癌细胞中诱发基因组不稳定,偶尔产生适应性更强的突变体,并可能加速适应性进化。应激诱导诱变的新出现的分子机制各不相同,但有一些显著的共同成分,突出了两个共同主题。第一个主题是通过细胞应激反应对诱变进行时间调控,特别是当细胞对其环境适应不良(即处于应激状态)时,这种调控会促进随机突变。第二个主题是通过将产生突变的机制与诸如DNA断裂修复或转录等局部事件相耦合,在基因组空间中可能对随机诱变进行限制。这种定位可能会使稀有适应性更强的突变体基因组中有害突变的积累最小化,并促进局部协同进化。尽管除了对DNA的直接损伤之外,由其他压力诱导的诱变以前存在争议,但现在各种应激诱导诱变程序存在的证据确凿且广泛。这些机制可能推动微生物致病机制和抗生素抗性、肿瘤进展和化疗抗性的进化,所有这些都是在压力下由突变驱动发生的。应激诱导突变机制中出现的共性为针对所有这些过程的新治疗干预提供了希望。

相似文献

1
Mutation as a stress response and the regulation of evolvability.
Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):399-435. doi: 10.1080/10409230701648502.
2
Roles of E. coli double-strand-break-repair proteins in stress-induced mutation.
DNA Repair (Amst). 2006 Feb 3;5(2):258-73. doi: 10.1016/j.dnarep.2005.10.006. Epub 2005 Nov 28.
4
Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress.
Res Microbiol. 2004 Jun;155(5):352-9. doi: 10.1016/j.resmic.2004.01.020.
5
Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.
PLoS Genet. 2017 Jul 20;13(7):e1006733. doi: 10.1371/journal.pgen.1006733. eCollection 2017 Jul.
7
What is mutation? A chapter in the series: How microbes "jeopardize" the modern synthesis.
PLoS Genet. 2019 Apr 1;15(4):e1007995. doi: 10.1371/journal.pgen.1007995. eCollection 2019 Apr.
8
The sigma(E) stress response is required for stress-induced mutation and amplification in Escherichia coli.
Mol Microbiol. 2010 Jul;77(2):415-30. doi: 10.1111/j.1365-2958.2010.07213.x. Epub 2010 May 19.
9
Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance.
Annu Rev Cancer Biol. 2017 Mar;1:119-140. doi: 10.1146/annurev-cancerbio-050216-121919.
10
What limits the efficiency of double-strand break-dependent stress-induced mutation in Escherichia coli?
J Mol Microbiol Biotechnol. 2011;21(1-2):8-19. doi: 10.1159/000335354. Epub 2012 Jan 13.

引用本文的文献

1
A transient mutational burst occurs during yeast colony development.
Mol Syst Biol. 2025 Jun 9. doi: 10.1038/s44320-025-00117-1.
2
High-resolution analysis of the treated coeliac disease microbiome reveals strain-level variation.
Gut Microbes. 2025 Dec;17(1):2489071. doi: 10.1080/19490976.2025.2489071. Epub 2025 Apr 27.
3
Antibacterial compounds against non-growing and intracellular bacteria.
NPJ Antimicrob Resist. 2025 Apr 11;3(1):25. doi: 10.1038/s44259-025-00097-0.
4
Adaptive evolution of through modulating TOR signaling.
mBio. 2025 Apr 9;16(4):e0394724. doi: 10.1128/mbio.03947-24. Epub 2025 Mar 4.
5
Genetic adaptation to amoxicillin in Escherichia coli: The limited role of dinB and katE.
PLoS One. 2025 Feb 19;20(2):e0312223. doi: 10.1371/journal.pone.0312223. eCollection 2025.
7
Replication stress increases de novo CNVs across the malaria parasite genome.
bioRxiv. 2024 Dec 31:2024.12.19.629492. doi: 10.1101/2024.12.19.629492.
8
Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology.
Mol Biol Evol. 2025 Jan 6;42(1). doi: 10.1093/molbev/msae269.
9
Most Pleiotropic Effects of Gene Knockouts Are Evolutionarily Transient in Yeasts.
Mol Biol Evol. 2024 Sep 4;41(9). doi: 10.1093/molbev/msae189.
10
Cancer drug-tolerant persister cells: from biological questions to clinical opportunities.
Nat Rev Cancer. 2024 Oct;24(10):694-717. doi: 10.1038/s41568-024-00737-z. Epub 2024 Sep 2.

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
2
Controlling mutation: intervening in evolution as a therapeutic strategy.
Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):341-54. doi: 10.1080/10409230701597741.
3
Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress.
Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):327-39. doi: 10.1080/10409230701597717.
4
Adaptive mutation in Saccharomyces cerevisiae.
Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):285-311. doi: 10.1080/10409230701507773.
5
Adaptive amplification.
Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):271-83. doi: 10.1080/10409230701507757.
6
Too many mutants with multiple mutations.
Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58. doi: 10.1080/10409230701495631.
7
Lessons from 50 years of SOS DNA-damage-induced mutagenesis.
Nat Rev Mol Cell Biol. 2007 Jul;8(7):587-94. doi: 10.1038/nrm2198.
8
Spontaneous DNA breakage in single living Escherichia coli cells.
Nat Genet. 2007 Jun;39(6):797-802. doi: 10.1038/ng2051. Epub 2007 May 27.
9
Evidence for mutation showers.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8403-8. doi: 10.1073/pnas.0610902104. Epub 2007 May 7.
10
Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo.
Genetics. 2007 Jul;176(3):1431-40. doi: 10.1534/genetics.107.072405. Epub 2007 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验