Suppr超能文献

通过病毒衣壳模型探索复杂自组装的参数空间。

Exploring the parameter space of complex self-assembly through virus capsid models.

作者信息

Sweeney Blake, Zhang Tiequan, Schwartz Russell

机构信息

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Biophys J. 2008 Feb 1;94(3):772-83. doi: 10.1529/biophysj.107.107284. Epub 2007 Oct 5.

Abstract

We use discrete event stochastic simulations to characterize the parameter space of a model of icosahedral viral capsid assembly as functions of monomer-monomer binding rates. The simulations reveal a parameter space characterized by three major assembly mechanisms, a standard nucleation-limited monomer-accretion pathway and two distinct hierarchical assembly pathways, as well as unproductive regions characterized by kinetically trapped species. Much of the productive parameter space also consists of border regions between these domains where hybrid pathways are likely to operate. A simpler octamer system studied for comparison reveals three analogous pathways, but is characterized by much lesser sensitivity to parameter variations in contrast to the sharp changes visible in the icosahedral model. The model suggests that modest changes in assembly conditions, consistent with expected differences between in vitro and in vivo assembly environments, could produce substantial shifts in assembly pathways. These results suggest that we must be cautious in drawing conclusions about in vivo capsid self-assembly dynamics from theoretical or in vitro models, as the nature of the basic assembly mechanisms accessible to a system can substantially differ between simple and complex model systems, between theoretical models and simulation results, and between in vitro and in vivo assembly conditions.

摘要

我们使用离散事件随机模拟来表征二十面体病毒衣壳组装模型的参数空间,该参数空间是单体 - 单体结合速率的函数。模拟揭示了一个参数空间,其特征在于三种主要的组装机制、一种标准的成核限制单体积累途径和两种不同的分级组装途径,以及以动力学捕获物种为特征的非生产性区域。许多生产性参数空间还包括这些域之间的边界区域,在这些区域中可能会出现混合途径。为进行比较而研究的一个更简单的八聚体系统揭示了三种类似的途径,但与二十面体模型中可见的急剧变化相比,其对参数变化的敏感性要小得多。该模型表明,组装条件的适度变化,与体外和体内组装环境之间的预期差异一致,可能会导致组装途径发生重大转变。这些结果表明,我们在从理论或体外模型得出关于体内衣壳自组装动力学的结论时必须谨慎,因为一个系统可利用的基本组装机制的性质在简单和复杂模型系统之间、理论模型和模拟结果之间以及体外和体内组装条件之间可能会有很大差异。

相似文献

1
Exploring the parameter space of complex self-assembly through virus capsid models.
Biophys J. 2008 Feb 1;94(3):772-83. doi: 10.1529/biophysj.107.107284. Epub 2007 Oct 5.
2
Investigating scaling effects on virus capsid-like self-assembly using discrete event simulations.
IEEE Trans Nanobioscience. 2007 Sep;6(3):235-41. doi: 10.1109/tnb.2007.903484.
3
Dynamic pathways for viral capsid assembly.
Biophys J. 2006 Jul 1;91(1):42-54. doi: 10.1529/biophysj.105.076851. Epub 2006 Mar 24.
4
Modeling HIV-1 viral capsid nucleation by dynamical systems.
Math Biosci. 2015 Dec;270(Pt A):95-105. doi: 10.1016/j.mbs.2015.10.007. Epub 2015 Oct 24.
5
Classical nucleation theory of virus capsids.
Biophys J. 2006 Mar 15;90(6):1939-48. doi: 10.1529/biophysj.105.072975. Epub 2005 Dec 30.
8
Controlling viral capsid assembly with templating.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051904. doi: 10.1103/PhysRevE.77.051904. Epub 2008 May 8.
9
Simulation studies of a phenomenological model for elongated virus capsid formation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051504. doi: 10.1103/PhysRevE.75.051504. Epub 2007 May 21.
10
Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics.
Biophys J. 2006 Jan 1;90(1):57-64. doi: 10.1529/biophysj.105.072207. Epub 2005 Oct 7.

引用本文的文献

1
Computer Simulations Show That Liquid-Liquid Phase Separation Enhances Self-Assembly.
ACS Nano. 2025 Aug 26;19(33):30275-30291. doi: 10.1021/acsnano.5c08120. Epub 2025 Aug 9.
2
Hierarchical assembly is more robust than egalitarian assembly in synthetic capsids.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2312775121. doi: 10.1073/pnas.2312775121. Epub 2024 Feb 7.
3
Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate).
Eur Phys J E Soft Matter. 2023 Nov 2;46(11):107. doi: 10.1140/epje/s10189-023-00363-x.
4
Temporal control by cofactors prevents kinetic trapping in retroviral Gag lattice assembly.
Biophys J. 2023 Aug 8;122(15):3173-3190. doi: 10.1016/j.bpj.2023.06.021. Epub 2023 Jun 30.
5
NERDSS: A Nonequilibrium Simulator for Multibody Self-Assembly at the Cellular Scale.
Biophys J. 2020 Jun 16;118(12):3026-3040. doi: 10.1016/j.bpj.2020.05.002. Epub 2020 May 16.
6
Generalizing Gillespie's Direct Method to Enable Network-Free Simulations.
Bull Math Biol. 2019 Aug;81(8):2822-2848. doi: 10.1007/s11538-018-0418-2. Epub 2018 Mar 28.
7
Quantitative computational models of molecular self-assembly in systems biology.
Phys Biol. 2017 May 23;14(3):035003. doi: 10.1088/1478-3975/aa6cdc.
8
Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation.
PLoS One. 2016 May 31;11(5):e0156547. doi: 10.1371/journal.pone.0156547. eCollection 2016.
9
Derivative-Free Optimization of Rate Parameters of Capsid Assembly Models from Bulk in Vitro Data.
IEEE/ACM Trans Comput Biol Bioinform. 2017 Jul-Aug;14(4):844-855. doi: 10.1109/TCBB.2016.2563421. Epub 2016 May 5.
10
Allosteric Control of Icosahedral Capsid Assembly.
J Phys Chem B. 2016 Jul 7;120(26):6306-18. doi: 10.1021/acs.jpcb.6b02768. Epub 2016 May 9.

本文引用的文献

1
Investigating scaling effects on virus capsid-like self-assembly using discrete event simulations.
IEEE Trans Nanobioscience. 2007 Sep;6(3):235-41. doi: 10.1109/tnb.2007.903484.
2
Reversible self-assembly of patchy particles into monodisperse icosahedral clusters.
J Chem Phys. 2007 Aug 28;127(8):085106. doi: 10.1063/1.2759922.
4
Molecular dissection of ø29 scaffolding protein function in an in vitro assembly system.
J Mol Biol. 2007 Mar 2;366(4):1161-73. doi: 10.1016/j.jmb.2006.11.091. Epub 2006 Dec 6.
5
Phage P22 procapsids equilibrate with free coat protein subunits.
J Mol Biol. 2007 Jan 12;365(2):513-22. doi: 10.1016/j.jmb.2006.09.088. Epub 2006 Oct 4.
6
Towards synthesis of a minimal cell.
Mol Syst Biol. 2006;2:45. doi: 10.1038/msb4100090. Epub 2006 Aug 22.
7
How can biochemical reactions within cells differ from those in test tubes?
J Cell Sci. 2006 Jul 15;119(Pt 14):2863-9. doi: 10.1242/jcs.03063.
9
Master equation approach to the assembly of viral capsids.
J Theor Biol. 2006 Oct 7;242(3):713-21. doi: 10.1016/j.jtbi.2006.04.023. Epub 2006 May 16.
10
Evaluating spatial constraints in cellular assembly processes using a monte carlo approach.
Cell Biochem Biophys. 2006;45(2):195-201. doi: 10.1385/cbb:45:2:195.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验