Suppr超能文献

了解病毒衣壳组装动力学的浓度依赖性——滞后时间的起源和确定临界核大小。

Understanding the concentration dependence of viral capsid assembly kinetics--the origin of the lag time and identifying the critical nucleus size.

机构信息

Department of Physics, Brandeis University, Waltham, Massachusetts, USA.

出版信息

Biophys J. 2010 Mar 17;98(6):1065-74. doi: 10.1016/j.bpj.2009.11.023.

Abstract

The kinetics for the assembly of viral proteins into a population of capsids can be measured in vitro with size exclusion chromatography or dynamic light scattering, but extracting mechanistic information from these studies is challenging. For example, it is not straightforward to determine the critical nucleus size or the elongation time (the time required for a nucleus to grow to completion). In this work, we study theoretical and computational models for capsid assembly to show that the critical nucleus size can be determined from the concentration dependence of the assembly half-life and that the elongation time is revealed by the length of the lag phase. Furthermore, we find that the system becomes kinetically trapped when nucleation becomes fast compared to elongation. Implications of this constraint for determining elongation mechanisms from experimental assembly data are discussed.

摘要

病毒蛋白组装成衣壳群体的动力学可以通过尺寸排阻色谱或动态光散射在体外进行测量,但从这些研究中提取机制信息具有挑战性。例如,确定临界核大小或延伸时间(核完成生长所需的时间)并不简单。在这项工作中,我们研究了衣壳组装的理论和计算模型,以表明临界核大小可以从组装半衰期的浓度依赖性来确定,并且延伸时间可以通过滞后阶段的长度来揭示。此外,我们发现当成核速度比延伸速度快时,系统会在动力学上被捕获。讨论了从实验组装数据确定延伸机制时这种限制的影响。

相似文献

2
Classical nucleation theory of virus capsids.
Biophys J. 2006 Mar 15;90(6):1939-48. doi: 10.1529/biophysj.105.072975. Epub 2005 Dec 30.
3
Dynamic pathways for viral capsid assembly.
Biophys J. 2006 Jul 1;91(1):42-54. doi: 10.1529/biophysj.105.076851. Epub 2006 Mar 24.
4
Controlling viral capsid assembly with templating.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051904. doi: 10.1103/PhysRevE.77.051904. Epub 2008 May 8.
5
A theoretical model successfully identifies features of hepatitis B virus capsid assembly.
Biochemistry. 1999 Nov 2;38(44):14644-52. doi: 10.1021/bi991611a.
6
Exploring the parameter space of complex self-assembly through virus capsid models.
Biophys J. 2008 Feb 1;94(3):772-83. doi: 10.1529/biophysj.107.107284. Epub 2007 Oct 5.
7
In vitro papillomavirus capsid assembly analyzed by light scattering.
Virology. 2004 Aug 1;325(2):320-7. doi: 10.1016/j.virol.2004.04.034.
9
Investigating scaling effects on virus capsid-like self-assembly using discrete event simulations.
IEEE Trans Nanobioscience. 2007 Sep;6(3):235-41. doi: 10.1109/tnb.2007.903484.
10
Simulation studies of a phenomenological model for elongated virus capsid formation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051504. doi: 10.1103/PhysRevE.75.051504. Epub 2007 May 21.

引用本文的文献

1
Computer Simulations Show That Liquid-Liquid Phase Separation Enhances Self-Assembly.
ACS Nano. 2025 Aug 26;19(33):30275-30291. doi: 10.1021/acsnano.5c08120. Epub 2025 Aug 9.
2
Modeling Viral Capsid Assembly: A Review of Computational Strategies and Applications.
Cells. 2024 Dec 17;13(24):2088. doi: 10.3390/cells13242088.
3
Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses.
Subcell Biochem. 2024;105:693-741. doi: 10.1007/978-3-031-65187-8_19.
4
Discovering optimal kinetic pathways for self-assembly using automatic differentiation.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2403384121. doi: 10.1073/pnas.2403384121. Epub 2024 May 1.
5
Hierarchical assembly is more robust than egalitarian assembly in synthetic capsids.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2312775121. doi: 10.1073/pnas.2312775121. Epub 2024 Feb 7.
6
Temporal control by cofactors prevents kinetic trapping in retroviral Gag lattice assembly.
Biophys J. 2023 Aug 8;122(15):3173-3190. doi: 10.1016/j.bpj.2023.06.021. Epub 2023 Jun 30.
7
Self-assembly coupled to liquid-liquid phase separation.
PLoS Comput Biol. 2023 May 15;19(5):e1010652. doi: 10.1371/journal.pcbi.1010652. eCollection 2023 May.
9
Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins.
PLoS Comput Biol. 2022 Mar 21;18(3):e1009969. doi: 10.1371/journal.pcbi.1009969. eCollection 2022 Mar.
10
Equilibrium mechanisms of self-limiting assembly.
Rev Mod Phys. 2021 Apr-Jun;93(2). doi: 10.1103/revmodphys.93.025008. Epub 2021 Jun 11.

本文引用的文献

1
The role of collective motion in examples of coarsening and self-assembly.
Soft Matter. 2009 Mar 21;5(6):1251-1262. doi: 10.1039/b810031d. Epub 2008 Nov 7.
2
Assembly of viruses and the pseudo-law of mass action.
J Chem Phys. 2009 Oct 21;131(15):155101. doi: 10.1063/1.3212694.
3
A theory for viral capsid assembly around electrostatic cores.
J Chem Phys. 2009 Mar 21;130(11):114902. doi: 10.1063/1.3086041.
4
Invariant polymorphism in virus capsid assembly.
J Am Chem Soc. 2009 Feb 25;131(7):2606-14. doi: 10.1021/ja807730x.
5
Phase transformation near the classical limit of stability.
Phys Rev Lett. 2008 Dec 19;101(25):256102. doi: 10.1103/PhysRevLett.101.256102. Epub 2008 Dec 18.
6
Role of reversibility in viral capsid growth: a paradigm for self-assembly.
Phys Rev Lett. 2008 Oct 31;101(18):186101. doi: 10.1103/PhysRevLett.101.186101. Epub 2008 Oct 28.
7
Mechanisms of size control and polymorphism in viral capsid assembly.
Nano Lett. 2008 Nov;8(11):3850-7. doi: 10.1021/nl802269a. Epub 2008 Oct 25.
8
Self-assembly of brome mosaic virus capsids: insights from shorter time-scale experiments.
J Phys Chem A. 2008 Oct 2;112(39):9405-12. doi: 10.1021/jp802498z. Epub 2008 Aug 28.
9
Controlling viral capsid assembly with templating.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051904. doi: 10.1103/PhysRevE.77.051904. Epub 2008 May 8.
10
Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid.
J Mol Biol. 2008 Sep 19;381(5):1395-406. doi: 10.1016/j.jmb.2008.06.020. Epub 2008 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验