Department of Physics, Brandeis University, Waltham, Massachusetts, USA.
Biophys J. 2010 Mar 17;98(6):1065-74. doi: 10.1016/j.bpj.2009.11.023.
The kinetics for the assembly of viral proteins into a population of capsids can be measured in vitro with size exclusion chromatography or dynamic light scattering, but extracting mechanistic information from these studies is challenging. For example, it is not straightforward to determine the critical nucleus size or the elongation time (the time required for a nucleus to grow to completion). In this work, we study theoretical and computational models for capsid assembly to show that the critical nucleus size can be determined from the concentration dependence of the assembly half-life and that the elongation time is revealed by the length of the lag phase. Furthermore, we find that the system becomes kinetically trapped when nucleation becomes fast compared to elongation. Implications of this constraint for determining elongation mechanisms from experimental assembly data are discussed.
病毒蛋白组装成衣壳群体的动力学可以通过尺寸排阻色谱或动态光散射在体外进行测量,但从这些研究中提取机制信息具有挑战性。例如,确定临界核大小或延伸时间(核完成生长所需的时间)并不简单。在这项工作中,我们研究了衣壳组装的理论和计算模型,以表明临界核大小可以从组装半衰期的浓度依赖性来确定,并且延伸时间可以通过滞后阶段的长度来揭示。此外,我们发现当成核速度比延伸速度快时,系统会在动力学上被捕获。讨论了从实验组装数据确定延伸机制时这种限制的影响。