Suppr超能文献

系统生物学中分子自组装的定量计算模型。

Quantitative computational models of molecular self-assembly in systems biology.

作者信息

Thomas Marcus, Schwartz Russell

机构信息

Computational Biology Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States of America. Joint Carnegie Mellon University/University of Pittsburgh Ph.D. Program in Computational Biology, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States of America.

出版信息

Phys Biol. 2017 May 23;14(3):035003. doi: 10.1088/1478-3975/aa6cdc.

Abstract

Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

摘要

分子自组装是生命系统中化学反应的主要形式,然而系统生物学建模方面的努力才刚刚开始认识到对自组装进行准确量化建模的必要性和挑战。自组装反应对于细胞和分子生物学中的几乎每一个重要过程都至关重要,因此处理这些反应是构建复杂细胞系统综合模型的必要步骤。然而,它们给模拟复杂系统的标准方法带来了特殊挑战。虽然一般的系统生物学领域才刚刚开始应对这些挑战,但已有大量文献针对更专门的自组装建模来处理这些挑战。本综述将探讨自组装建模的挑战、系统建模界应对这些挑战的初步努力,以及先前自组装相关工作中提供的一些解决方案。综述最后更全面地思考了自组装在复杂生物系统模型未来发展中可能扮演的角色。

相似文献

6
Mathematical and Computational Modeling in Complex Biological Systems.复杂生物系统中的数学与计算建模
Biomed Res Int. 2017;2017:5958321. doi: 10.1155/2017/5958321. Epub 2017 Mar 13.
7
Toward Community Standards and Software for Whole-Cell Modeling.迈向全细胞建模的社区标准和软件。
IEEE Trans Biomed Eng. 2016 Oct;63(10):2007-14. doi: 10.1109/TBME.2016.2560762. Epub 2016 Jun 10.

引用本文的文献

2
4
Collagen fibril assembly: New approaches to unanswered questions.胶原纤维组装:解决未决问题的新方法。
Matrix Biol Plus. 2021 Jul 13;12:100079. doi: 10.1016/j.mbplus.2021.100079. eCollection 2021 Dec.

本文引用的文献

2
Type III CRISPR-Cas Immunity: Major Differences Brushed Aside.III 型 CRISPR-Cas 免疫:主要差异被忽略。
Trends Microbiol. 2017 Jan;25(1):49-61. doi: 10.1016/j.tim.2016.09.012. Epub 2016 Oct 20.
4
A Robust Actin Filaments Image Analysis Framework.一个强大的肌动蛋白丝图像分析框架。
PLoS Comput Biol. 2016 Aug 23;12(8):e1005063. doi: 10.1371/journal.pcbi.1005063. eCollection 2016 Aug.
6
Rule-based modeling with Virtual Cell.使用虚拟细胞进行基于规则的建模。
Bioinformatics. 2016 Sep 15;32(18):2880-2. doi: 10.1093/bioinformatics/btw353. Epub 2016 Jun 9.
7
Stochastic Simulation of Biomolecular Networks in Dynamic Environments.动态环境中生物分子网络的随机模拟
PLoS Comput Biol. 2016 Jun 1;12(6):e1004923. doi: 10.1371/journal.pcbi.1004923. eCollection 2016 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验