Suppr超能文献

原子力显微镜揭示了紫色细菌中天线组织的多种模式:对能量转导机制和膜模型的启示。

Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.

作者信息

Sturgis James N, Niederman Robert A

机构信息

Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institute de Biologie Structurale et Microbiologie, UPR 9027, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France.

出版信息

Photosynth Res. 2008 Feb-Mar;95(2-3):269-78. doi: 10.1007/s11120-007-9239-0. Epub 2007 Oct 9.

Abstract

Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc (1) complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc (1) complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.

摘要

最近通过原子力显微镜(AFM)获得的紫色细菌胞内膜(ICM)的拓扑图,首次以亚分子分辨率展示了多组分生物膜天然结构的表面视图,这是结构生物学中的一个重要里程碑。研究揭示了多种依赖物种的、紧密堆积的光捕获(LH)复合物排列方式:在球形红杆菌中发现了组织最为高度有序的排列,其中外周LH2天线要么以大簇形式存在,要么以固定的行状散布在二聚体LH1 - 反应中心(RC)核心复合物的有序阵列之间。在其他同时含有LH1和LH2复合物的物种中观察到了更随机的组织方式,以光嗜红红螺菌为例,其单体LH1 - RC核心复合物随机堆积,并与LH2天线的大的准晶体区域混合在一起。令人惊讶的是,未观察到可被鉴定为ATP合酶或细胞色素bc(1)复合物的结构,这可能反映了它们位于ICM囊泡的极点或弯曲的膜区域,从AFM成像的平坦区域看不到这些地方。能量转导复合物的这种可能排列方式需要重新评估能量转导机制,这些机制将细胞色素bc(1)复合物与RC紧密联系在一起。相反,更合理的提议必须考虑醌氧化还原物种在适当时间尺度上在相当大的膜距离上的移动。AFM以及原子分辨率结构也为ICM的分子建模提供了基础,这正在使人们对光合复合物的超分子组织以及驱动它们分离成不同区域的力有更清晰的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验