Scheuring Simon, Sturgis James N
Institut Curie, Unite Mixte de Recherche-Centre National de Recherche Scientifique 168, 75231 Paris Cedex 05, France.
Biophys J. 2006 Nov 15;91(10):3707-17. doi: 10.1529/biophysj.106.083709. Epub 2006 Sep 1.
Photosynthetic organisms drive their metabolism by converting light energy into an electrochemical gradient with high efficiency. This conversion depends on the diffusion of quinones within the membrane. In purple photosynthetic bacteria, quinones reduced by the reaction center (RC) diffuse to the cytochrome bc(1) complex and then return once reoxidized to the RC. In Rhodospirillum photometricum the RC-containing core complexes are found in a disordered molecular environment, with fixed light-harvesting complex/core complex ratio but without a fixed architecture, whereas additional light-harvesting complexes synthesized under low-light conditions pack into large paracrystalline antenna domains. Here, we have analyzed, using time-lapse atomic force microscopy, the dynamics of the protein complexes in the different membrane domains and find that the disordered regions are dynamic whereas ordered antennae domains are static. Based on our observations we propose, and analyze using Monte Carlo simulations, a model for quinone diffusion in photosynthetic membranes. We show that the formation of large static antennae domains may represent a strategy for increasing electron transfer rates between distant complexes within the membrane and thus be important for photosynthetic efficiency.
光合生物通过高效地将光能转化为电化学梯度来驱动其新陈代谢。这种转化依赖于醌在膜内的扩散。在紫色光合细菌中,被反应中心(RC)还原的醌扩散到细胞色素bc(1)复合物,然后一旦重新氧化就返回RC。在光红假单胞菌中,含RC的核心复合物存在于无序的分子环境中,光捕获复合物/核心复合物的比例固定,但没有固定的结构,而在低光条件下合成的额外光捕获复合物则组装成大的准晶天线结构域。在这里,我们使用延时原子力显微镜分析了不同膜结构域中蛋白质复合物的动力学,发现无序区域是动态的,而有序的天线结构域是静态的。基于我们的观察结果,我们提出并使用蒙特卡罗模拟分析了光合膜中醌扩散的模型。我们表明,大的静态天线结构域的形成可能代表了一种提高膜内远距离复合物之间电子转移速率的策略,因此对光合效率很重要。