Frese Raoul N, Pàmies Josep C, Olsen John D, Bahatyrova Svetlana, van der Weij-de Wit Chantal D, Aartsma Thijs J, Otto Cees, Hunter C Neil, Frenkel Daan, van Grondelle Rienk
Biophysics, Faculty of Mathematics and Natural Sciences, Leiden University, 2300RA Leiden, The Netherlands.
Biophys J. 2008 Jan 15;94(2):640-7. doi: 10.1529/biophysj.107.116913. Epub 2007 Sep 7.
Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization are known under physiological conditions are of great value. We therefore conducted atomic force microscopy and polarized spectroscopy experiments on membranes of the photosynthetic bacterium Rhodobacter sphaeroides. These membranes are densely populated with peripheral light harvesting (LH2) complexes, physically and functionally connected to dimeric reaction center-light harvesting (RC-LH1-PufX) complexes. Here, we show that even when converting the dimeric RC-LH1-PufX complex into RC-LH1 monomers by deleting the gene encoding PufX, both the appearance of protein domains and the associated membrane curvature are retained. This suggests that a general mechanism may govern membrane organization and shape. Monte Carlo simulations of a membrane model accounting for crowding and protein geometry alone confirm that these features are sufficient to induce domain formation and membrane curvature. Our results suggest that coexisting ordered and fluid domains of like proteins can arise solely from asymmetries in protein size and shape, without the need to invoke specific interactions. Functionally, coexisting domains of different fluidity are of enormous importance to allow for diffusive processes to occur in crowded conditions.
折叠、曲率和结构域形成是许多生物膜的特征。然而,驱动曲率以及富含特定蛋白质复合物的特殊结构域形成的机制尚不清楚。因此,对在生理条件下形状和组织已知的膜进行研究具有重要价值。我们因此对光合细菌球形红杆菌的膜进行了原子力显微镜和偏振光谱实验。这些膜密集地分布着外周光捕获(LH2)复合物,它们在物理和功能上与二聚体反应中心 - 光捕获(RC-LH1-PufX)复合物相连。在此,我们表明,即使通过删除编码PufX的基因将二聚体RC-LH1-PufX复合物转化为RC-LH1单体,蛋白质结构域的外观和相关的膜曲率仍得以保留。这表明可能存在一种通用机制来控制膜的组织和形状。仅考虑拥挤和蛋白质几何形状的膜模型的蒙特卡罗模拟证实,这些特征足以诱导结构域形成和膜曲率。我们的结果表明,相似蛋白质共存的有序和流体结构域可能仅源于蛋白质大小和形状的不对称,而无需借助特定相互作用。在功能上,不同流动性的共存结构域对于在拥挤条件下发生扩散过程极为重要。