Suppr超能文献

蛋白质形状和拥挤效应驱动生物膜中结构域的形成和曲率。

Protein shape and crowding drive domain formation and curvature in biological membranes.

作者信息

Frese Raoul N, Pàmies Josep C, Olsen John D, Bahatyrova Svetlana, van der Weij-de Wit Chantal D, Aartsma Thijs J, Otto Cees, Hunter C Neil, Frenkel Daan, van Grondelle Rienk

机构信息

Biophysics, Faculty of Mathematics and Natural Sciences, Leiden University, 2300RA Leiden, The Netherlands.

出版信息

Biophys J. 2008 Jan 15;94(2):640-7. doi: 10.1529/biophysj.107.116913. Epub 2007 Sep 7.

Abstract

Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization are known under physiological conditions are of great value. We therefore conducted atomic force microscopy and polarized spectroscopy experiments on membranes of the photosynthetic bacterium Rhodobacter sphaeroides. These membranes are densely populated with peripheral light harvesting (LH2) complexes, physically and functionally connected to dimeric reaction center-light harvesting (RC-LH1-PufX) complexes. Here, we show that even when converting the dimeric RC-LH1-PufX complex into RC-LH1 monomers by deleting the gene encoding PufX, both the appearance of protein domains and the associated membrane curvature are retained. This suggests that a general mechanism may govern membrane organization and shape. Monte Carlo simulations of a membrane model accounting for crowding and protein geometry alone confirm that these features are sufficient to induce domain formation and membrane curvature. Our results suggest that coexisting ordered and fluid domains of like proteins can arise solely from asymmetries in protein size and shape, without the need to invoke specific interactions. Functionally, coexisting domains of different fluidity are of enormous importance to allow for diffusive processes to occur in crowded conditions.

摘要

折叠、曲率和结构域形成是许多生物膜的特征。然而,驱动曲率以及富含特定蛋白质复合物的特殊结构域形成的机制尚不清楚。因此,对在生理条件下形状和组织已知的膜进行研究具有重要价值。我们因此对光合细菌球形红杆菌的膜进行了原子力显微镜和偏振光谱实验。这些膜密集地分布着外周光捕获(LH2)复合物,它们在物理和功能上与二聚体反应中心 - 光捕获(RC-LH1-PufX)复合物相连。在此,我们表明,即使通过删除编码PufX的基因将二聚体RC-LH1-PufX复合物转化为RC-LH1单体,蛋白质结构域的外观和相关的膜曲率仍得以保留。这表明可能存在一种通用机制来控制膜的组织和形状。仅考虑拥挤和蛋白质几何形状的膜模型的蒙特卡罗模拟证实,这些特征足以诱导结构域形成和膜曲率。我们的结果表明,相似蛋白质共存的有序和流体结构域可能仅源于蛋白质大小和形状的不对称,而无需借助特定相互作用。在功能上,不同流动性的共存结构域对于在拥挤条件下发生扩散过程极为重要。

相似文献

6
Native architecture of the photosynthetic membrane from Rhodobacter veldkampii.源自荚膜红细菌光合膜的天然结构。
J Struct Biol. 2011 Jan;173(1):138-45. doi: 10.1016/j.jsb.2010.08.010. Epub 2010 Aug 24.
8
The native architecture of a photosynthetic membrane.光合膜的天然结构。
Nature. 2004 Aug 26;430(7003):1058-62. doi: 10.1038/nature02823.

引用本文的文献

1
Macromolecular Crowding in Mitochondria.
Subcell Biochem. 2025;109:241-256. doi: 10.1007/978-3-032-03370-3_11.
10
Membrane remodelling in bacteria.细菌中的膜重塑
J Struct Biol. 2016 Oct;196(1):3-14. doi: 10.1016/j.jsb.2016.05.010. Epub 2016 Jun 2.

本文引用的文献

1
The purple bacterial photosynthetic unit.紫细菌光合单位。
Photosynth Res. 1996 May;48(1-2):55-63. doi: 10.1007/BF00040996.
5
Depletion interaction in a quasi-two-dimensional binary colloid mixture: Monte Carlo simulations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011407. doi: 10.1103/PhysRevE.72.011407. Epub 2005 Jul 25.
6
Chromatic adaptation of photosynthetic membranes.光合膜的色适应
Science. 2005 Jul 15;309(5733):484-7. doi: 10.1126/science.1110879.
7
Supramolecular organization of thylakoid membrane proteins in green plants.绿色植物类囊体膜蛋白的超分子组织
Biochim Biophys Acta. 2005 Jan 7;1706(1-2):12-39. doi: 10.1016/j.bbabio.2004.09.009.
8
The long-range organization of a native photosynthetic membrane.天然光合膜的长程结构
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17994-9. doi: 10.1073/pnas.0407295102. Epub 2004 Dec 15.
9
The native architecture of a photosynthetic membrane.光合膜的天然结构。
Nature. 2004 Aug 26;430(7003):1058-62. doi: 10.1038/nature02823.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验