Huang Yi-Shuian, Richter Joel D
Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
Methods Enzymol. 2007;431:143-62. doi: 10.1016/S0076-6879(07)31008-2.
Synaptic plasticity, the ability of neuronal synapses to undergo morphological and biochemical changes in response to various stimuli, forms the underlying basis of long-term memory storage. Regulated mRNA translation at synapses is required for this plasticity. However, the mechanism by which translation at synapses is controlled and how the encoded proteins modulate persistent changes in synaptic morphology and functional integration in response to different input stimulations remain mostly unclear (Schuman et al., 2006; Sutton and Schuman, 2006). One approach to investigating the relationship between protein synthesis and plasticity is to identify factors, such as RNA binding proteins that control translation in the neurons and then determine the identities of the mRNAs to which they are bound. Molecular and cellular techniques have been employed in cultured neurons to study sequence-specific RNA-binding proteins, for example, the Cytoplasmic Polyadenylation Element Binding protein (CPEB) (Huang et al., 2002, 2003) and the Fragile-X Mental Retardation Protein (FMRP) (Vanderklish and Edelman, 2005; Zalfa et al., 2006) for their functions in localizing and regulating translation of mRNAs. Although several CPE-containing neuronal RNAs that undergo activity-dependent polyadenylation (Du and Richter, 2005; Wu et al., 1998) and FMRP-interacting mRNAs have been identified (Brown et al., 2001; Miyashiro et al., 2003), the validation of these targets whose translation is important for plasticity in vivo remains to be demonstrated (Darnell et al., 2005). In general, primary neurons in culture are difficult to manipulate. For example, they do not proliferate and their transfection efficiency is low ( approximately 1 to 10% of cells); this low efficiency is reduced even further as the cells age in culture, which hampers their practical use for biochemical analysis. When biochemical approaches are applied, they are often carried out in other more facile model systems, such as oocytes, in the case of CPEB, or in brains derived from knockout mice, for both CPEB and FMRP. However, the development of various viral delivery systems, shRNA knockdown techniques, reporter assays with high sensitivity, and neuron culture protocols have allowed investigators to analyze translational control in these cells, which may ultimately be used to investigate key mechanisms of synaptic plasticity. We have employed these procedures to investigate the function of CPEB3, a novel RNA-binding protein, in primary rat hippocampal neurons (Huang et al., 2006); here, we describe the experimental details of our methods, which could be used for any RNA binding protein.
突触可塑性是指神经元突触响应各种刺激而发生形态和生化变化的能力,它构成了长期记忆存储的基础。突触处的mRNA翻译调控对于这种可塑性是必需的。然而,突触处翻译的控制机制以及编码蛋白如何响应不同的输入刺激调节突触形态和功能整合的持续变化,目前大多仍不清楚(舒曼等人,2006年;萨顿和舒曼,2006年)。研究蛋白质合成与可塑性之间关系的一种方法是识别控制神经元中翻译的因子,如RNA结合蛋白,然后确定它们所结合的mRNA的身份。分子和细胞技术已被用于培养的神经元中,以研究序列特异性RNA结合蛋白,例如细胞质聚腺苷酸化元件结合蛋白(CPEB)(黄等人,2002年、2003年)和脆性X智力低下蛋白(FMRP)(范德克利什和埃德尔曼,2005年;扎尔法等人,2006年)在定位和调节mRNA翻译中的功能。尽管已经鉴定出几种经历活性依赖性聚腺苷酸化的含CPE神经元RNA(杜和里希特,2005年;吴等人,1998年)以及与FMRP相互作用的mRNA(布朗等人,2001年;宫代史郎等人,2003年),但这些其翻译对体内可塑性很重要的靶点的验证仍有待证明(达内尔等人,2005年)。一般来说,培养的原代神经元难以操作。例如,它们不增殖,转染效率低(约1%至10%的细胞);随着细胞在培养中老化,这种低效率会进一步降低,这阻碍了它们在生化分析中的实际应用。当应用生化方法时,它们通常在其他更简便的模型系统中进行,如卵母细胞(对于CPEB而言),或在敲除小鼠的大脑中(对于CPEB和FMRP两者而言)。然而,各种病毒递送系统、shRNA敲低技术、高灵敏度报告基因检测以及神经元培养方案的发展,使研究人员能够分析这些细胞中的翻译控制,这最终可能用于研究突触可塑性的关键机制。我们已采用这些方法来研究一种新型RNA结合蛋白CPEB3在原代大鼠海马神经元中的功能(黄等人,2006年);在此,我们描述了我们方法的实验细节,这些细节可用于任何RNA结合蛋白。