Sengupta Supratim, Rutenberg Andrew
Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada.
Phys Biol. 2007 Jul 10;4(3):145-53. doi: 10.1088/1478-3975/4/3/001.
Ongoing sub-cellular oscillation of Min proteins is required to block minicelling in Escherichia coli. Experimentally, Min oscillations are seen in newly divided cells and no minicells are produced. In model Min systems many daughter cells do not oscillate following septation because of unequal partitioning of Min proteins between the daughter cells. Using the 3D model of Huang et al, we investigate the septation process in detail to determine the cause of the asymmetric partitioning of Min proteins between daughter cells. We find that this partitioning problem arises at certain phases of the MinD and MinE oscillations with respect to septal closure and it persists independently of parameter variation. At most 85% of the daughter cells exhibit Min oscillation following septation. Enhanced MinD binding at the static polar and dynamic septal regions, consistent with cardiolipin domains, does not substantially increase this fraction of oscillating daughters. We believe that this problem will be shared among all existing Min models and discuss possible biological mechanisms that may minimize partitioning errors of Min proteins following septation.
大肠杆菌中Min蛋白持续的亚细胞振荡对于阻止小细胞形成是必需的。在实验中,可在新分裂的细胞中观察到Min振荡,并且不会产生小细胞。在Min模型系统中,许多子细胞在隔膜形成后不会振荡,因为Min蛋白在子细胞之间分配不均。利用Huang等人的三维模型,我们详细研究了隔膜形成过程,以确定Min蛋白在子细胞之间不对称分配的原因。我们发现,这种分配问题出现在MinD和MinE振荡相对于隔膜闭合的某些阶段,并且它独立于参数变化而持续存在。最多85%的子细胞在隔膜形成后表现出Min振荡。与心磷脂结构域一致,MinD在静态极性和动态隔膜区域的增强结合并没有显著增加振荡子细胞的比例。我们认为这个问题将在所有现有的Min模型中存在,并讨论了可能的生物学机制,这些机制可能会使隔膜形成后Min蛋白的分配错误最小化。