Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.
Mol Syst Biol. 2011 Jan 4;7:457. doi: 10.1038/msb.2010.111.
How cells manage to get equal distribution of their structures and molecules at cell division is a crucial issue in biology. In principle, a feedback mechanism could always ensure equality by measuring and correcting the distribution in the progeny. However, an elegant alternative could be a mechanism relying on self-organization, with the interplay between system properties and cell geometry leading to the emergence of equal partitioning. The problem is exemplified by the bacterial Min system that defines the division site by oscillating from pole to pole. Unequal partitioning of Min proteins at division could negatively impact system performance and cell growth because of loss of Min oscillations and imprecise mid-cell determination. In this study, we combine live cell and computational analyses to show that known properties of the Min system together with the gradual reduction of protein exchange through the constricting septum are sufficient to explain the observed highly precise spontaneous protein partitioning. Our findings reveal a novel and effective mechanism of protein partitioning in dividing cells and emphasize the importance of self-organization in basic cellular processes.
细胞如何在细胞分裂时实现其结构和分子的均等分配是生物学中的一个关键问题。原则上,通过测量和纠正后代中的分布,反馈机制可以始终确保均等性。然而,一种优雅的替代方案可能是一种依赖于自组织的机制,通过系统属性和细胞几何形状之间的相互作用,导致均等分割的出现。细菌 Min 系统就是一个例证,该系统通过从极到极的振荡来定义分裂位点。由于 Min 振荡的丧失和不准确的中体确定,分裂时 Min 蛋白的不均等分配可能会对系统性能和细胞生长产生负面影响。在这项研究中,我们结合活细胞和计算分析表明,已知的 Min 系统特性以及通过收缩隔膜逐渐减少蛋白质交换足以解释观察到的高度精确的自发蛋白质分配。我们的发现揭示了一种新的、有效的分裂细胞中蛋白质分配机制,并强调了自组织在基本细胞过程中的重要性。