Suppr超能文献

细胞分裂前后 Min 振荡模式的变化。

Changes in the Min oscillation pattern before and after cell birth.

机构信息

Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA.

出版信息

J Bacteriol. 2010 Aug;192(16):4134-42. doi: 10.1128/JB.00364-10. Epub 2010 Jun 11.

Abstract

The Min system regulates the positioning of the cell division site in many bacteria. In Escherichia coli, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a gfp-minD fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.

摘要

Min 系统调节许多细菌的细胞分裂位点的定位。在大肠杆菌中,MinD 从一个细胞极快速地迁移到另一个细胞极。与 MinC 一起,MinD 有助于防止不需要的 FtsZ 环在极处组装,并稳定它们在细胞中部的定位。通过对表达 gfp-minD 融合蛋白的生长和分裂细胞进行延时显微镜观察,我们发现绿色荧光蛋白(GFP)-MinD 除了在极处之外,通常还在细胞中部暂停,并且随着细胞生长和细胞分裂的接近,细胞中部暂停的频率增加。在隔膜形成的后期阶段,GFP-MinD 通常仅在隔膜的一侧暂停,然后迁移到隔膜的另一侧或细胞极。大约在隔膜关闭的时候,这种不规则的模式经常切换到子细胞中短暂的双极到极的振荡,最终成为稳定的双振荡。单个 MinD 区的分裂成两个取决于正在发育的隔膜,这是一种解释 MinD 如何均匀分配到两个子细胞的潜在机制。GFP-MinD 的隔膜暂停不需要 MinC,这表明 MinC-FtsZ 相互作用不会驱动 MinD-隔膜相互作用,而是 MinD 识别发育中的隔膜的特定几何形状、脂质和/或蛋白质靶标。最后,我们观察到 minicells 长轴上非常短距离的规则的端到端振荡,支持了几何形状在 MinD 定位中的重要性。

相似文献

1
Changes in the Min oscillation pattern before and after cell birth.
J Bacteriol. 2010 Aug;192(16):4134-42. doi: 10.1128/JB.00364-10. Epub 2010 Jun 11.
5
Asymmetric constriction of dividing Escherichia coli cells induced by expression of a fusion between two min proteins.
J Bacteriol. 2014 Jun;196(11):2089-100. doi: 10.1128/JB.01425-13. Epub 2014 Mar 28.
7
Dynamic localization cycle of the cell division regulator MinE in Escherichia coli.
EMBO J. 2001 Apr 2;20(7):1563-72. doi: 10.1093/emboj/20.7.1563.
8
MinCD cell division proteins form alternating copolymeric cytomotive filaments.
Nat Commun. 2014 Dec 15;5:5341. doi: 10.1038/ncomms6341.
9
Differences in MinC/MinD sensitivity between polar and internal Z rings in Escherichia coli.
J Bacteriol. 2011 Jan;193(2):367-76. doi: 10.1128/JB.01095-10. Epub 2010 Nov 19.

引用本文的文献

1
Growth-dependent concentration gradient of the oscillating Min system in Escherichia coli.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202406107. Epub 2024 Dec 2.
2
The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus.
Nat Commun. 2024 Sep 18;15(1):8198. doi: 10.1038/s41467-024-52217-5.
3
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.
4
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
6
Rhythmicity and waves in the cortex of single cells.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0116.
7
The Min-protein oscillations in : an example of self-organized cellular protein waves.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0111.
8
Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli.
PLoS One. 2017 Oct 17;12(10):e0185947. doi: 10.1371/journal.pone.0185947. eCollection 2017.
9
Critical waves and the length problem of biology.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10371-6. doi: 10.1073/pnas.1422855112. Epub 2015 Aug 3.
10
Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ.
Front Microbiol. 2015 Jun 11;6:586. doi: 10.3389/fmicb.2015.00586. eCollection 2015.

本文引用的文献

1
Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli.
Mol Microbiol. 2010 Jan;75(2):499-512. doi: 10.1111/j.1365-2958.2009.07006.x. Epub 2009 Dec 16.
2
Localisation of DivIVA by targeting to negatively curved membranes.
EMBO J. 2009 Aug 5;28(15):2272-82. doi: 10.1038/emboj.2009.129. Epub 2009 May 28.
5
A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD.
Mol Microbiol. 2008 Dec;70(6):1556-69. doi: 10.1111/j.1365-2958.2008.06501.x. Epub 2008 Oct 23.
6
MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ.
Curr Biol. 2008 Feb 26;18(4):235-44. doi: 10.1016/j.cub.2008.01.042.
8
Modeling partitioning of Min proteins between daughter cells after septation in Escherichia coli.
Phys Biol. 2007 Jul 10;4(3):145-53. doi: 10.1088/1478-3975/4/3/001.
9
The C-terminal domain of MinC inhibits assembly of the Z ring in Escherichia coli.
J Bacteriol. 2007 Jan;189(1):236-43. doi: 10.1128/JB.00666-06. Epub 2006 Nov 3.
10
Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast.
J Bacteriol. 2006 Nov;188(21):7661-7. doi: 10.1128/JB.00911-06. Epub 2006 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验