Zanardi Paolo, Giorda Paolo, Cozzini Marco
Department of Physics and Astronomy, University of Southern California Los Angeles, California 90089-0484, USA.
Phys Rev Lett. 2007 Sep 7;99(10):100603. doi: 10.1103/PhysRevLett.99.100603.
The manifold of coupling constants parametrizing a quantum Hamiltonian is equipped with a natural Riemannian metric with an operational distinguishability content. We argue that the singularities of this metric are in correspondence with the quantum phase transitions featured by the corresponding system. This approach provides a universal conceptual framework to study quantum critical phenomena which is differential geometric and information theoretic at the same time.
参数化量子哈密顿量的耦合常数流形配备了一种具有操作可区分性内涵的自然黎曼度量。我们认为,这种度量的奇点与相应系统所具有的量子相变相对应。这种方法提供了一个通用的概念框架来研究量子临界现象,它同时具有微分几何和信息理论的性质。