Rende Riccardo, Viteritti Luciano Loris, Becca Federico, Scardicchio Antonello, Laio Alessandro, Carleo Giuseppe
International School for Advanced Studies (SISSA), Trieste, Italy.
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Commun. 2025 Aug 5;16(1):7213. doi: 10.1038/s41467-025-62098-x.
Foundation models are highly versatile neural-network architectures capable of processing different data types, such as text and images, and generalizing across various tasks like classification and generation. Inspired by this success, we propose Foundation Neural-Network Quantum States (FNQS) as an integrated paradigm for studying quantum many-body systems. FNQS leverage key principles of foundation models to define variational wave functions based on a single, versatile architecture that processes multimodal inputs, including spin configurations and Hamiltonian physical couplings. Unlike specialized architectures tailored for individual Hamiltonians, FNQS can generalize to physical Hamiltonians beyond those encountered during training, offering a unified framework adaptable to various quantum systems and tasks. FNQS enable the efficient estimation of quantities that are traditionally challenging or computationally intensive to calculate using conventional methods, particularly disorder-averaged observables. Furthermore, the fidelity susceptibility can be easily obtained to uncover quantum phase transitions without prior knowledge of order parameters. These pretrained models can be efficiently fine-tuned for specific quantum systems. The architectures trained in this paper are publicly available at https://huggingface.co/nqs-models , along with examples for implementing these neural networks in NetKet.
基础模型是高度通用的神经网络架构,能够处理不同的数据类型,如文本和图像,并能在各种任务(如分类和生成)中进行泛化。受此成功启发,我们提出基础神经网络量子态(FNQS)作为研究量子多体系统的一种集成范式。FNQS利用基础模型的关键原理,基于单一通用架构定义变分波函数,该架构可处理多模态输入,包括自旋配置和哈密顿物理耦合。与为单个哈密顿量量身定制的专用架构不同,FNQS可以推广到训练期间未遇到的物理哈密顿量,提供一个适用于各种量子系统和任务的统一框架。FNQS能够有效地估计传统方法计算起来具有挑战性或计算量很大的量,特别是无序平均可观测量。此外,无需序参量的先验知识,就可以轻松获得保真度磁化率以揭示量子相变。这些预训练模型可以针对特定量子系统进行高效微调。本文训练的架构可在https://huggingface.co/nqs-models上公开获取,同时还提供了在NetKet中实现这些神经网络的示例。