Heiliger Christian, Gradhand Martin, Zahn Peter, Mertig Ingrid
Department of Physics, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany.
Phys Rev Lett. 2007 Aug 10;99(6):066804. doi: 10.1103/PhysRevLett.99.066804.
The influence of the finite thickness and structure, amorphous or crystalline, of Fe electrodes on the tunneling magnetoresistance (TMR) ratio is investigated by ab initio calculations in Fe/MgO/Fe tunnel junctions. An amorphous Fe layer in direct contact with the MgO barrier causes a low TMR ratio of only 44%. By inserting crystalline Fe monolayers between the barrier and the amorphous Fe the TMR ratio increases rapidly and reaches the same level as for semi-infinite Fe electrodes. Even one crystalline Fe monolayer is sufficient to achieve a giant TMR ratio exceeding 500%. Omitting the amorphous Fe has nearly no influence on the results if there are more than two monolayers of crystalline Fe next to the barrier. The results demonstrate that the reservoirs can even be nonmagnetic. The TMR emerges from the interplay of symmetry selection in the barrier and spin filtering at the electrode-barrier interface.
通过对Fe/MgO/Fe隧道结进行从头算计算,研究了铁电极的有限厚度和结构(非晶态或晶态)对隧道磁电阻(TMR)比的影响。与MgO势垒直接接触的非晶态铁层导致TMR比仅为44%的低值。通过在势垒和非晶态铁之间插入晶态铁单层,TMR比迅速增加,并达到与半无限铁电极相同的水平。即使只有一层晶态铁单层也足以实现超过500%的巨TMR比。如果在势垒旁边有两层以上的晶态铁单层,省略非晶态铁对结果几乎没有影响。结果表明,储层甚至可以是非磁性的。TMR源于势垒中对称性选择与电极-势垒界面处自旋过滤的相互作用。