School of Physics and CRANN, Trinity College, Dublin 2, Ireland.
Phys Rev Lett. 2012 Nov 30;109(22):226803. doi: 10.1103/PhysRevLett.109.226803.
We propose, by performing advanced ab initio electron transport calculations, an all-oxide composite magnetic tunnel junction, within which both large tunneling magnetoresistance (TMR) and tunneling electroresistance (TER) effects can coexist. The TMR originates from the symmetry-driven spin filtering provided by an insulating BaTiO(3) barrier to the electrons injected from the SrRuO(3) electrodes. Following recent theoretical suggestions, the TER effect is achieved by intercalating a thin insulating layer, here SrTiO(3), at one of the SrRuO(3)/BaTiO(3) interfaces. As the complex band structure of SrTiO(3) has the same symmetry as that of BaTiO(3), the inclusion of such an intercalated layer does not negatively alter the TMR and in fact increases it. Crucially, the magnitude of the TER also scales with the thickness of the SrTiO(3) layer. The SrTiO(3) thickness becomes then a single control parameter for both the TMR and the TER effect. This protocol offers a practical way to the fabrication of four-state memory cells.
我们通过执行先进的从头算电子输运计算,提出了一种全氧化物复合磁隧道结,其中可以共存大隧穿磁电阻(TMR)和隧穿电电阻(TER)效应。TMR 源于绝缘 BaTiO3 势垒对从 SrRuO3 电极注入的电子提供的对称性驱动的自旋过滤。根据最近的理论建议,通过在 SrRuO3 / BaTiO3 界面之一处插入薄的绝缘层(此处为 SrTiO3)来实现 TER 效应。由于 SrTiO3 的复杂能带结构与 BaTiO3 的相同,因此包含这种插入层不会对 TMR 产生负面影响,实际上还会增加 TMR。至关重要的是,TER 的幅度也与 SrTiO3 层的厚度成正比。因此,SrTiO3 厚度成为 TMR 和 TER 效应的单个控制参数。该方案为制造四态存储单元提供了一种实用方法。