Suppr超能文献

基因表达谱分析预测头颈部癌放化疗后的预后

Gene expression profiling to predict outcome after chemoradiation in head and neck cancer.

作者信息

Pramana Jimmy, Van den Brekel Michiel W M, van Velthuysen Marie-Louise F, Wessels Lodewijk F A, Nuyten Dimitry S, Hofland Ingrid, Atsma Douwe, Pimentel Nuno, Hoebers Frank J P, Rasch Coen R N, Begg Adrian C

机构信息

Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, the Netherlands.

出版信息

Int J Radiat Oncol Biol Phys. 2007 Dec 1;69(5):1544-52. doi: 10.1016/j.ijrobp.2007.08.032. Epub 2007 Oct 10.

Abstract

PURPOSE

The goal of the present study was to improve prediction of outcome after chemoradiation in advanced head and neck cancer using gene expression analysis.

MATERIALS AND METHODS

We collected 92 biopsies from untreated head and neck cancer patients subsequently given cisplatin-based chemoradiation (RADPLAT) for advanced squamous cell carcinomas (HNSCC). After RNA extraction and labeling, we performed dye swap experiments using 35k oligo-microarrays. Supervised analyses were performed to create classifiers to predict locoregional control and disease recurrence. Published gene sets with prognostic value in other studies were also tested.

RESULTS

Using supervised classification on the whole series, gene sets separating good and poor outcome could be found for all end points. However, when splitting tumors into training and validation groups, no robust classifiers could be found. Using Gene Set Enrichment analysis, several gene sets were found to be enriched in locoregional recurrences, although with high false-discovery rates. Previously published signatures for radiosensitivity, hypoxia, proliferation, "wound," stem cells, and chromosomal instability were not significantly correlated with outcome. However, a recently published signature for HNSCC defining a "high-risk" group was shown to be predictive for locoregional control in our dataset.

CONCLUSION

Gene sets can be found with predictive potential for locoregional control after combined radiation and chemotherapy in HNSCC. How treatment-specific these gene sets are needs further study.

摘要

目的

本研究的目的是通过基因表达分析改善晚期头颈癌放化疗后结局的预测。

材料与方法

我们收集了92例未经治疗的头颈癌患者的活检样本,这些患者随后接受了基于顺铂的放化疗(RADPLAT)用于晚期鳞状细胞癌(HNSCC)。在RNA提取和标记后,我们使用35k寡核苷酸微阵列进行了染料交换实验。进行监督分析以创建预测局部区域控制和疾病复发的分类器。还测试了其他研究中具有预后价值的已发表基因集。

结果

在整个系列中使用监督分类,对于所有终点都可以找到区分良好和不良结局的基因集。然而,当将肿瘤分为训练组和验证组时,未发现可靠的分类器。使用基因集富集分析,发现几个基因集在局部区域复发中富集,尽管错误发现率很高。先前发表的关于放射敏感性、缺氧、增殖、“伤口”、干细胞和染色体不稳定性的特征与结局无显著相关性。然而,最近发表的一个定义“高危”组的HNSCC特征在我们的数据集中显示出对局部区域控制具有预测性。

结论

在HNSCC中,可以找到对放化疗后局部区域控制具有预测潜力的基因集。这些基因集对治疗的特异性程度有待进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验