Silva Raquel M, Paredes João A, Moura Gabriela R, Manadas Bruno, Lima-Costa Tatiana, Rocha Rita, Miranda Isabel, Gomes Ana C, Koerkamp Marian J G, Perrot Michel, Holstege Frank C P, Boucherie Hélian, Santos Manuel A S
Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
EMBO J. 2007 Oct 31;26(21):4555-65. doi: 10.1038/sj.emboj.7601876. Epub 2007 Oct 11.
During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.
在过去30年里,在各种细菌和真核生物物种中发现了对标准遗传密码的几种改变。有义密码子和无义密码子已被重新分配或重新编程,以将遗传密码扩展到硒代半胱氨酸和吡咯赖氨酸。这些发现凸显了遗传密码中意想不到的灵活性,但并未阐明生物体是如何在密码子身份重新定义所产生的蛋白质组混乱中存活下来的。为了对这个问题有新的认识,我们在酿酒酵母中重建了白色念珠菌的遗传密码改变,并使用DNA微阵列、蛋白质组学和遗传学方法相结合来评估其对基因表达、适应性和有性生殖的影响。这种基因操作阻止了交配,使酵母处于二倍体状态,重塑了基因表达,并产生了应激交叉保护,在环境挑战条件下产生了适应性优势。这项研究突出了密码子身份重新定义在白色念珠菌属进化过程中的意外作用,并强烈表明遗传密码改变会产生加速物种形成的遗传障碍。