Lin Xiao, Yu Allen Chi Shing, Chan Ting Fung
School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
Life (Basel). 2017 Mar 14;7(1):12. doi: 10.3390/life7010012.
This year marks the 48th anniversary of Francis Crick's seminal work on the origin of the genetic code, in which he first proposed the "frozen accident" hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification.
今年是弗朗西斯·克里克(Francis Crick)关于遗传密码起源的开创性工作48周年,他在该工作中首次提出了“冻结偶然事件”假说,以描述针对导致全球蛋白质组发生毁灭性改变的遗传密码变化的进化选择。然而,众多研究已证明自然和人工遗传密码变体都是可行的。基因工程的最新进展使得能够创造出将非标准甚至非天然氨基酸纳入蛋白质组的合成生物体。目前,成功的遗传密码工程主要是通过创建正交氨酰 - tRNA/合成酶对来重新利用终止密码子和稀有密码子,或引入四联体密码子来实现的。在这篇综述中,我们总结了遗传密码工程的当前进展,并讨论了关于遗传密码修饰的挑战、当前认识及未来展望。