Suppr超能文献

一种Rho3同源物对于稻瘟病菌附着胞的发育和致病性至关重要。

A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea.

作者信息

Zheng Wu, Chen Jisheng, Liu Wende, Zheng Shiqin, Zhou Jie, Lu Guodong, Wang Zonghua

机构信息

The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.

出版信息

Eukaryot Cell. 2007 Dec;6(12):2240-50. doi: 10.1128/EC.00104-07. Epub 2007 Oct 12.

Abstract

The small GTPase Rho3 is conserved in fungi and plays a key role in the control of cell polarity and exocytosis in yeast. In this report, we show that a Rho3 homolog, MgRho3, is dispensable for polarized hyphal growth in the rice blast fungus Magnaporthe grisea. However, MgRho3 is required for plant infection. Appressoria formed by the Mgrho3 deletion mutants are morphologically abnormal and defective in plant penetration. Conidia of the Mgrho3 deletion mutants are narrower than those of the wild-type strain and delayed in germination. Transformants expressing a dominant negative Mgrho3 allele exhibit similar phenotypes as the Mgrho3 deletion mutant, while transformants expressing a constitutively active allele of MgRho3 can produce normal conidia but remain defective in appressorium formation and plant infection. In contrast, overexpression of wild-type MgRho3 increases the infectivity of M. grisea. Our results reveal a new role for the conserved Rho3 as a critical regulator of developmental processes and pathogenicity of M. grisea.

摘要

小GTP酶Rho3在真菌中保守存在,并在酵母细胞极性和胞吐作用的控制中起关键作用。在本报告中,我们表明,Rho3同源物MgRho3对于稻瘟病菌Magnaporthe grisea的极性菌丝生长并非必需。然而,MgRho3是植物感染所必需的。Mgrho3缺失突变体形成的附着胞在形态上异常,并且在穿透植物方面存在缺陷。Mgrho3缺失突变体的分生孢子比野生型菌株的分生孢子窄,并且萌发延迟。表达显性负性MgRho3等位基因的转化体表现出与Mgrho3缺失突变体相似的表型,而表达MgRho3组成型活性等位基因的转化体可以产生正常的分生孢子,但在附着胞形成和植物感染方面仍然存在缺陷。相反,野生型MgRho3的过表达增加了稻瘟病菌的感染力。我们的结果揭示了保守的Rho3作为稻瘟病菌发育过程和致病性关键调节因子的新作用。

相似文献

1
A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea.
Eukaryot Cell. 2007 Dec;6(12):2240-50. doi: 10.1128/EC.00104-07. Epub 2007 Oct 12.
2
A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
Plant Cell. 2005 Apr;17(4):1317-29. doi: 10.1105/tpc.104.029116. Epub 2005 Mar 4.
3
Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
Mol Plant Microbe Interact. 2004 May;17(5):547-56. doi: 10.1094/MPMI.2004.17.5.547.
4
Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea.
Plant Cell. 2006 Oct;18(10):2822-35. doi: 10.1105/tpc.105.038422. Epub 2006 Oct 20.

引用本文的文献

1
A rho-type GTPase activating protein affects the growth and development of Cordyceps cicadae.
Arch Microbiol. 2024 Jul 3;206(8):339. doi: 10.1007/s00203-024-04072-7.
2
A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages.
Front Immunol. 2024 Jan 8;14:1329843. doi: 10.3389/fimmu.2023.1329843. eCollection 2023.
3
The Devastating Rice Blast Airborne Pathogen -A Review on Genes Studied with Mutant Analysis.
Pathogens. 2023 Feb 26;12(3):379. doi: 10.3390/pathogens12030379.
4
The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms.
PLoS Pathog. 2022 Dec 8;18(12):e1011036. doi: 10.1371/journal.ppat.1011036. eCollection 2022 Dec.
5
Transcriptomic Dynamics of Active and Inactive States of Rho GTPase MoRho3 in .
J Fungi (Basel). 2022 Oct 11;8(10):1060. doi: 10.3390/jof8101060.
7
The Redox Proteome of Thiol Proteins in the Rice Blast Fungus .
Front Microbiol. 2021 Mar 10;12:648894. doi: 10.3389/fmicb.2021.648894. eCollection 2021.
9
10
A Small GTPase RHO2 Plays an Important Role in Pre-infection Development in the Rice Blast Pathogen .
Plant Pathol J. 2018 Dec;34(6):470-479. doi: 10.5423/PPJ.OA.04.2018.0069. Epub 2018 Dec 1.

本文引用的文献

1
Molecular genetic analysis of the rice blast fungus, magnaporthe grisea.
Annu Rev Phytopathol. 1991;29:443-67. doi: 10.1146/annurev.py.29.090191.002303.
2
Candida albicans Rho-type GTPase-encoding genes required for polarized cell growth and cell separation.
Eukaryot Cell. 2007 May;6(5):844-54. doi: 10.1128/EC.00201-06. Epub 2007 Mar 9.
3
Central roles of small GTPases in the development of cell polarity in yeast and beyond.
Microbiol Mol Biol Rev. 2007 Mar;71(1):48-96. doi: 10.1128/MMBR.00028-06.
4
Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus.
Plant Cell. 2007 Feb;19(2):706-24. doi: 10.1105/tpc.106.046300. Epub 2007 Feb 23.
5
Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea.
Plant Cell. 2006 Oct;18(10):2822-35. doi: 10.1105/tpc.105.038422. Epub 2006 Oct 20.
8
The genome sequence of the rice blast fungus Magnaporthe grisea.
Nature. 2005 Apr 21;434(7036):980-6. doi: 10.1038/nature03449.
9
The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea.
Biochem Soc Trans. 2005 Apr;33(Pt 2):384-8. doi: 10.1042/BST0330384.
10
A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
Plant Cell. 2005 Apr;17(4):1317-29. doi: 10.1105/tpc.104.029116. Epub 2005 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验