Suppr超能文献

布尔基因调控模型的稳健性与状态空间结构

Robustness and state-space structure of Boolean gene regulatory models.

作者信息

Willadsen Kai, Wiles Janet

机构信息

ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Qld. 4072, Australia.

出版信息

J Theor Biol. 2007 Dec 21;249(4):749-65. doi: 10.1016/j.jtbi.2007.09.004. Epub 2007 Sep 12.

Abstract

Robustness to perturbation is an important characteristic of genetic regulatory systems, but the relationship between robustness and model dynamics has not been clearly quantified. We propose a method for quantifying both robustness and dynamics in terms of state-space structures, for Boolean models of genetic regulatory systems. By investigating existing models of the Drosophila melanogaster segment polarity network and the Saccharomyces cerevisiae cell-cycle network, we show that the structure of attractor basins can yield insight into the underlying decision making required of the system, and also the way in which the system maximises its robustness. In particular, gene networks implementing decisions based on a few genes have simple state-space structures, and their attractors are robust by virtue of their simplicity. Gene networks with decisions that involve many interacting genes have correspondingly more complicated state-space structures, and robustness cannot be achieved through the structure of the attractor basins, but is achieved by larger attractor basins that dominate the state space. These different types of robustness are demonstrated by the two models: the D. melanogaster segment polarity network is robust due to simple attractor basins that implement decisions based on spatial signals; the S. cerevisiae cell-cycle network has a complicated state-space structure, and is robust only due to a giant attractor basin that dominates the state space.

摘要

对扰动的鲁棒性是基因调控系统的一个重要特征,但鲁棒性与模型动力学之间的关系尚未得到明确量化。我们提出了一种方法,用于根据状态空间结构对基因调控系统的布尔模型的鲁棒性和动力学进行量化。通过研究黑腹果蝇体节极性网络和酿酒酵母细胞周期网络的现有模型,我们表明吸引子盆地的结构可以深入了解系统所需的潜在决策,以及系统最大化其鲁棒性的方式。特别是,基于少数基因进行决策的基因网络具有简单的状态空间结构,并且它们的吸引子因其简单性而具有鲁棒性。涉及许多相互作用基因的决策的基因网络相应地具有更复杂的状态空间结构,并且鲁棒性不能通过吸引子盆地的结构来实现,而是通过主导状态空间的更大吸引子盆地来实现。这两种模型展示了这些不同类型的鲁棒性:黑腹果蝇体节极性网络由于基于空间信号进行决策的简单吸引子盆地而具有鲁棒性;酿酒酵母细胞周期网络具有复杂的状态空间结构,并且仅由于主导状态空间的巨大吸引子盆地而具有鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验