Crépey Pascal, Barthélemy Marc
Unité 707, Institut national de la Santé et de la Recherche médicale, Paris, France.
Am J Epidemiol. 2007 Dec 1;166(11):1244-51. doi: 10.1093/aje/kwm266. Epub 2007 Oct 15.
In this paper, the authors develop a method of detecting correlations between epidemic patterns in different regions that are due to human movement and introduce a null model in which the travel-induced correlations are cancelled. They apply this method to the well-documented cases of seasonal influenza outbreaks in the United States and France. In the United States (using data for 1972-2002), the authors observed strong short-range correlations between several states and their immediate neighbors, as well as robust long-range spreading patterns resulting from large domestic air-traffic flows. The stability of these results over time allowed the authors to draw conclusions about the possible impact of travel restrictions on epidemic spread. The authors also applied this method to the case of France (1984-2004) and found that on the regional scale, there was no transportation mode that clearly dominated disease spread. The simplicity and robustness of this method suggest that it could be a useful tool for detecting transmission channels in the spread of epidemics.
在本文中,作者开发了一种检测不同地区因人员流动导致的流行模式之间相关性的方法,并引入了一个消除旅行诱导相关性的零模型。他们将此方法应用于美国和法国有充分记录的季节性流感爆发案例。在美国(使用1972 - 2002年的数据),作者观察到几个州与其直接相邻州之间存在强烈的短程相关性,以及由大量国内航空交通流量导致的稳健的长程传播模式。这些结果随时间的稳定性使作者能够得出关于旅行限制对疫情传播可能影响的结论。作者还将此方法应用于法国(1984 - 2004年)的案例,发现从区域尺度来看,没有一种运输方式明显主导疾病传播。该方法的简单性和稳健性表明,它可能是检测疫情传播中传播渠道的有用工具。