Suppr超能文献

高分辨率空间数值传染病的新动态。

Emerging dynamics from high-resolution spatial numerical epidemics.

机构信息

LIS UMR 7020 CNRS, Aix Marseille University, Marseille, France.

MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.

出版信息

Elife. 2021 Oct 15;10:e71417. doi: 10.7554/eLife.71417.

Abstract

Simulating nationwide realistic individual movements with a detailed geographical structure can help optimise public health policies. However, existing tools have limited resolution or can only account for a limited number of agents. We introduce Epidemap, a new framework that can capture the daily movement of more than 60 million people in a country at a building-level resolution in a realistic and computationally efficient way. By applying it to the case of an infectious disease spreading in France, we uncover hitherto neglected effects, such as the emergence of two distinct peaks in the daily number of cases or the importance of local density in the timing of arrival of the epidemic. Finally, we show that the importance of super-spreading events strongly varies over time.

摘要

利用具有详细地理结构的全国性现实个体运动模拟,可以帮助优化公共卫生政策。然而,现有的工具分辨率有限,或者只能考虑有限数量的代理。我们引入了 Epidemap,这是一个新的框架,可以以现实和计算有效的方式在建筑物级别的分辨率下捕捉一个国家超过 6000 万人的日常运动。通过将其应用于传染病在法国传播的案例,我们揭示了迄今为止被忽视的影响,例如病例数量每天出现两个明显高峰,或者疫情到达时间的局部密度的重要性。最后,我们表明超级传播事件的重要性随时间有很大变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71cd/8568339/6249da1945ec/elife-71417-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验