You Zheng, Omura Satoshi, Ikeda Haruo, Cane David E, Jogl Gerwald
Department of Chemistry, Brown University, Providence, Rhode Island 02912-9108, USA.
J Biol Chem. 2007 Dec 14;282(50):36552-60. doi: 10.1074/jbc.M706358200. Epub 2007 Oct 16.
The non-heme iron dioxygenase PtlH from the soil organism Streptomyces avermitilis is a member of the iron(II)/alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes an essential reaction in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone. To investigate the structural basis for substrate recognition and catalysis, we have determined the x-ray crystal structure of PtlH in several complexes with the cofactors iron, alpha-ketoglutarate, and the non-reactive enantiomer of the substrate, ent-1-deoxypentalenic acid, in four different crystal forms to up to 1.31 A resolution. The overall structure of PtlH forms a double-stranded barrel helix fold, and the cofactor-binding site for iron and alpha-ketoglutarate is similar to other double-stranded barrel helix fold enzymes. Additional secondary structure elements that contribute to the substrate-binding site in PtlH are not conserved in other double-stranded barrel helix fold enzymes. Binding of the substrate enantiomer induces a reorganization of the monoclinic crystal lattice leading to a disorder-order transition of a C-terminal alpha-helix. The newly formed helix blocks the major access to the active site and effectively traps the bound substrate. Kinetic analysis of wild type and site-directed mutant proteins confirms a critical function of two arginine residues in substrate binding, while simulated docking of the enzymatic reaction product reveals the likely orientation of bound substrate.
来自土壤微生物阿维链霉菌的非血红素铁双加氧酶PtlH是铁(II)/α-酮戊二酸依赖性双加氧酶超家族的成员,催化倍半萜抗生素戊内酯生物合成中的一个关键反应。为了研究底物识别和催化的结构基础,我们确定了PtlH与辅因子铁、α-酮戊二酸以及底物的非反应性对映体(对映-1-脱氧戊烯酸)形成的几种复合物的X射线晶体结构,这些复合物以四种不同的晶体形式存在,分辨率高达1.31埃。PtlH的整体结构形成双链桶状螺旋折叠,铁和α-酮戊二酸的辅因子结合位点与其他双链桶状螺旋折叠酶相似。在其他双链桶状螺旋折叠酶中,对PtlH底物结合位点有贡献的额外二级结构元件并不保守。底物对映体的结合诱导单斜晶格的重组,导致C端α-螺旋的无序-有序转变。新形成的螺旋阻断了进入活性位点的主要通道,并有效地捕获了结合的底物。野生型和定点突变蛋白的动力学分析证实了两个精氨酸残基在底物结合中的关键作用,而酶促反应产物的模拟对接揭示了结合底物的可能取向。