King L M, Nguyen H T, Lal S K L
Key Univ. Res. Centre for Health Technol., Univ. of Technol., Sydney, NSW, Australia.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2187-90. doi: 10.1109/IEMBS.2006.259231.
This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).
本文介绍了一种使用人工神经网络(ANN)的驾驶员疲劳检测系统。利用从20名职业卡车司机和35名非职业司机采集的脑电图(EEG)数据,将时域数据处理为α、β、δ和θ波段,然后将其输入神经网络以检测驾驶员疲劳的开始。该神经网络使用一种称为放大梯度函数(MGF)的训练优化技术。该技术通过修改标准反向传播(SBP)算法来减少训练所需的时间。结果表明,MGF对职业驾驶员疲劳的分类准确率为81.49%(灵敏度80.53%,特异性82.44%),对非职业驾驶员疲劳的分类准确率为83.06%(灵敏度84.04%,特异性82.08%)。