Suppr超能文献

基于对数梅尔频谱图和卷积递归神经网络的脑电图驾驶疲劳检测

EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks.

作者信息

Gao Dongrui, Tang Xue, Wan Manqing, Huang Guo, Zhang Yongqing

机构信息

School of Computer Science, Chengdu University of Information Technology, Chengdu, China.

School of Electronic Information and Artificial Intelligence, Leshan Normal University, Leshan, China.

出版信息

Front Neurosci. 2023 Mar 9;17:1136609. doi: 10.3389/fnins.2023.1136609. eCollection 2023.

Abstract

Driver fatigue detection is one of the essential tools to reduce accidents and improve traffic safety. Its main challenge lies in the problem of how to identify the driver's fatigue state accurately. Existing detection methods include yawning and blinking based on facial expressions and physiological signals. Still, lighting and the environment affect the detection results based on facial expressions. In contrast, the electroencephalographic (EEG) signal is a physiological signal that directly responds to the human mental state, thus reducing the impact on the detection results. This paper proposes a log-Mel spectrogram and Convolution Recurrent Neural Network (CRNN) model based on EEG to implement driver fatigue detection. This structure allows the advantages of the different networks to be exploited to overcome the disadvantages of using them individually. The process is as follows: first, the original EEG signal is subjected to a one-dimensional convolution method to achieve a Short Time Fourier Transform (STFT) and passed through a Mel filter bank to obtain a logarithmic Mel spectrogram, and then the resulting logarithmic Mel spectrogram is fed into a fatigue detection model to complete the fatigue detection task for the EEG signals. The fatigue detection model consists of a 6-layer convolutional neural network (CNN), bi-directional recurrent neural networks (Bi-RNNs), and a classifier. In the modeling phase, spectrogram features are transported to the 6-layer CNN to automatically learn high-level features, thereby extracting temporal features in the bi-directional RNN to obtain spectrogram-temporal information. Finally, the alert or fatigue state is obtained by a classifier consisting of a fully connected layer, a ReLU activation function, and a softmax function. Experiments were conducted on publicly available datasets in this study. The results show that the method can accurately distinguish between alert and fatigue states with high stability. In addition, the performance of four existing methods was compared with the results of the proposed method, all of which showed that the proposed method could achieve the best results so far.

摘要

驾驶员疲劳检测是减少事故和提高交通安全的重要工具之一。其主要挑战在于如何准确识别驾驶员的疲劳状态。现有的检测方法包括基于面部表情和生理信号的打哈欠和眨眼检测。然而,光照和环境会影响基于面部表情的检测结果。相比之下,脑电图(EEG)信号是一种直接反映人类精神状态的生理信号,从而减少了对检测结果的影响。本文提出了一种基于EEG的对数梅尔频谱图和卷积循环神经网络(CRNN)模型来实现驾驶员疲劳检测。这种结构允许利用不同网络的优点来克服单独使用它们的缺点。具体过程如下:首先,对原始EEG信号采用一维卷积方法实现短时傅里叶变换(STFT),并通过梅尔滤波器组获得对数梅尔频谱图,然后将得到的对数梅尔频谱图输入疲劳检测模型,完成对EEG信号的疲劳检测任务。疲劳检测模型由一个6层卷积神经网络(CNN)、双向循环神经网络(Bi-RNN)和一个分类器组成。在建模阶段,将频谱图特征传输到6层CNN中自动学习高级特征,从而在双向RNN中提取时间特征以获得频谱图-时间信息。最后,通过一个由全连接层、ReLU激活函数和softmax函数组成的分类器获得警觉或疲劳状态。本研究使用公开可用的数据集进行了实验。结果表明,该方法能够以高稳定性准确区分警觉和疲劳状态。此外,将四种现有方法的性能与所提方法的结果进行了比较,所有结果均表明所提方法能取得目前最好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f4e/10033857/c92f704a74b9/fnins-17-1136609-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验