Suppr超能文献

用于欺骗检测中脑电图特征提取的小波分析。

Wavelet analysis for EEG feature extraction in deception detection.

作者信息

Merzagora Anna Caterina, Bunce Scott, Izzetoglu Meltem, Onaral Banu

机构信息

Sch. of Biomed. Eng., Drexel Univ., Philadelphia, PA 19104, USA.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2434-7. doi: 10.1109/IEMBS.2006.260247.

Abstract

Deception detection has important clinical and legal implications. However, the reliability of methods for the discrimination between truthful and deceptive responses is still limited. Efforts to improve reliability have examined measures of central nervous system function such as EEG. However, EEG analyses based on either time- or frequency-domain parameters have had mixed results. Because EEG is a nonstationary signal, the use of joint time-frequency features may yield more reliable results for detecting deception. The goal of this study was to investigate the feasibility of deception detection based on EEG features extracted through wavelet transformation. EEG was recorded from 4 electrode sites (F3, F4, F7, F8) during a modified version of the Guilty Knowledge Test (GKT) in 5 subjects. Wavelet analysis revealed significant differences between deceptive and truthful responses. These differences were detected in features whose frequency range roughly corresponds to the EEG beta rhythm and within a time window which coincides with the P300 component. These preliminary results indicate that joint time-frequency EEG features extracted through wavelet analysis may provide a more reliable method for detecting deception than standard ERPs.

摘要

欺骗检测具有重要的临床和法律意义。然而,区分真实反应和欺骗性反应的方法的可靠性仍然有限。为提高可靠性所做的努力考察了诸如脑电图(EEG)等中枢神经系统功能的测量方法。然而,基于时域或频域参数的脑电图分析结果参差不齐。由于脑电图是一种非平稳信号,使用联合时频特征可能会在检测欺骗方面产生更可靠的结果。本研究的目的是探讨基于通过小波变换提取的脑电图特征进行欺骗检测的可行性。在对5名受试者进行的改良版犯罪知识测试(GKT)过程中,从4个电极部位(F3、F4、F7、F8)记录脑电图。小波分析揭示了欺骗性反应和真实反应之间的显著差异。这些差异在频率范围大致对应于脑电图β节律且与P300成分重合的时间窗口内的特征中被检测到。这些初步结果表明,通过小波分析提取的联合时频脑电图特征可能比标准事件相关电位(ERP)提供一种更可靠的欺骗检测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验