Suppr超能文献

基于小波包变换和线性判别分析的高效脑电欺骗识别测试。

An efficient EEG based deceit identification test using wavelet packet transform and linear discriminant analysis.

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Goa, India.

Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.

出版信息

J Neurosci Methods. 2019 Feb 15;314:31-40. doi: 10.1016/j.jneumeth.2019.01.007. Epub 2019 Jan 17.

Abstract

BACKGROUND

Brain-computer interface (BCI) is a combination of hardware and software that provides a non-muscular channel to send various messages and commands to the outside world and control external devices such as computers. BCI helps severely disabled patients having neuromuscular injuries, locked-in syndrome (LiS) to lead their life as a normal person to the best extent possible. There are various applications of BCI not only in the field of medicine but also in entertainment, lie detection, gaming, etc. METHODOLOGY: In this work, using BCI a Deceit Identification Test (DIT) is performed based on P300, which has a positive peak from 300 ms to 1000 ms of stimulus onset. The goal is to recognize and classify P300 signals with excellent results. The pre-processing has been performed using the band-pass filter to eliminate the artifacts.

COMPARISON WITH EXISTING METHODS

Wavelet packet transform (WPT) is applied for feature extraction whereas linear discriminant analysis (LDA) is used as a classifier. Comparison with the other existing methods namely BCD, BAD, BPNN etc has been performed.

RESULTS

A novel experiment is conducted using EEG acquisition device for the collection of data set on 20 subjects, where 10 subjects acted as guilty and 10 subjects acted as innocent. Training and testing data are in the ratio of 90:10 and the accuracy obtained is up to 91.67%. The proposed approach that uses WPT and LDA results in high accuracy, sensitivity, and specificity.

CONCLUSION

The method provided better results in comparison with the other existing methods. It is an efficient approach for deceit identification for EEG based BCI.

摘要

背景

脑机接口(BCI)是一种硬件和软件的结合,它提供了一种非肌肉通道,将各种信息和命令发送到外部世界,并控制外部设备,如计算机。BCI 帮助患有神经肌肉损伤、闭锁综合征(LiS)的严重残疾患者尽可能正常地生活。BCI 不仅在医学领域,而且在娱乐、测谎、游戏等领域都有各种应用。

方法

在这项工作中,使用基于 P300 的 BCI 进行欺骗识别测试(DIT),P300 是一种从刺激开始后 300ms 到 1000ms 的正峰。目标是识别和分类 P300 信号,取得优异的结果。预处理使用带通滤波器进行,以消除伪影。

与现有方法的比较

应用小波包变换(WPT)进行特征提取,而线性判别分析(LDA)用作分类器。与其他现有的方法,如 BCD、BAD、BPNN 等进行了比较。

结果

使用 EEG 采集设备进行了一项新的实验,对 20 名受试者的数据进行了采集,其中 10 名受试者表现为有罪,10 名受试者表现为无罪。训练和测试数据的比例为 90:10,获得的准确率高达 91.67%。该方法使用 WPT 和 LDA,结果准确率、灵敏度和特异性都很高。

结论

与其他现有方法相比,该方法提供了更好的结果。它是一种基于 EEG 的 BCI 欺骗识别的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验