Suppr超能文献

验证蒙特卡罗模拟对正常数据的三分类理想观察者工作点估计的有效性。

Validation of Monte Carlo estimates of three-class ideal observer operating points for normal data.

机构信息

The Department of Physiology, 303 E Superior St., Northwestern University, Chicago, IL 60611, USA.

出版信息

Acad Radiol. 2013 Jul;20(7):908-14. doi: 10.1016/j.acra.2013.04.002.

Abstract

RATIONALE AND OBJECTIVES

Traditional two-class receiver operating characteristic (ROC) analysis is inadequate for the complete evaluation of observer performance in tasks with more than two classes.

MATERIALS AND METHODS

Here, a Monte Carlo estimation method for operating point coordinates on a three-class ROC surface is developed and compared with analytically calculated coordinates in two special cases: (1) univariate and (2) restricted bivariate trinormal underlying data.

RESULTS

In both cases, the statistical estimates were found to be good in the sense that the analytical values lay within the 95% confidence interval of the estimated values about 95% of the time.

CONCLUSIONS

The statistical estimation method should be key in the development of a pragmatic performance metric for evaluation of observers in classification tasks with three or more classes.

摘要

原理和目的

传统的两类接收器操作特征(ROC)分析对于评估具有两个以上类别的任务中的观察者性能是不够的。

材料和方法

本文开发了一种用于三维 ROC 表面上操作点坐标的蒙特卡罗估计方法,并在两个特殊情况下与分析计算的坐标进行了比较:(1)单变量和(2)受限双变量三正态基础数据。

结果

在这两种情况下,统计估计都被发现是良好的,因为分析值大约有 95%的时间落在估计值的 95%置信区间内。

结论

对于具有三个或更多类别的分类任务中观察者性能的评估,统计估计方法应该是一种实用的性能指标的关键。

相似文献

3
The Youden Index in the Generalized Receiver Operating Characteristic Curve Context.广义接受者操作特征曲线背景下的约登指数
Int J Biostat. 2019 Apr 3;15(1):/j/ijb.2019.15.issue-1/ijb-2018-0060/ijb-2018-0060.xml. doi: 10.1515/ijb-2018-0060.

本文引用的文献

3
Three-class ROC analysis--toward a general decision theoretic solution.三分类 ROC 分析——走向通用决策理论解决方案。
IEEE Trans Med Imaging. 2010 Jan;29(1):206-15. doi: 10.1109/TMI.2009.2034516. Epub 2009 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验