Valdramidis V P, Geeraerd A H, Van Impe J F
Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
J Appl Microbiol. 2007 Nov;103(5):1922-30. doi: 10.1111/j.1365-2672.2007.03426.x.
In previous studies the microbial kinetics of Escherichia coli K12 have been evaluated under static and dynamic conditions (Valdramidis et al. 2005, 2006). An acquired microbial thermotolerance following heating rates lower than 0.82 degrees C min(-1) for the studied micro-organism was observed. Quantification of this induced physiological phenomenon and incorporation, as a model building block, in a general microbial inactivation model is the main outcome of this work.
The microbial inactivation rate observed (k(obs)) under time-varying temperature conditions is studied and expressed as a function of the heating rate (dT/ dt). Hereto, a model building block related to the microbial physiology (k(phys)) under stress conditions is developed. Evaluation of the performance of the developed mathematical approach depicts that physiological adaptation is an essential issue to be considered when modelling microbial inactivation.
Consideration, at a mathematical level, of microbial responses resulting in physiological adaptations contribute to the reliable quantification of the safety risks during food processing.
By taking into account the physiological adaptation, the microbiological evolution during heat processing can be accurately assessed, and overly conservative or fail dangerous food processing designs can be avoided.
在先前的研究中,已在静态和动态条件下评估了大肠杆菌K12的微生物动力学(瓦尔德拉米迪斯等人,2005年,2006年)。观察到在所研究的微生物中,加热速率低于0.82℃/分钟时会产生获得性微生物耐热性。量化这种诱导的生理现象并将其作为模型构建块纳入一般的微生物失活模型是这项工作的主要成果。
研究了在随时间变化的温度条件下观察到的微生物失活速率(k(obs)),并将其表示为加热速率(dT/dt)的函数。在此,开发了一个与应激条件下微生物生理学相关的模型构建块(k(phys))。对所开发数学方法性能的评估表明,生理适应是微生物失活建模时需要考虑的一个重要问题。
在数学层面考虑导致生理适应的微生物反应,有助于可靠地量化食品加工过程中的安全风险。
通过考虑生理适应,可以准确评估热处理过程中的微生物演变,避免过于保守或危险的食品加工设计失败。