Suppr超能文献

厌氧NADH-延胡索酸还原酶系统在多房棘球绦虫的呼吸链中占主导地位,为泡型包虫病的化疗提供了一个新靶点。

Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of alveolar echinococcosis.

作者信息

Matsumoto Jun, Sakamoto Kimitoshi, Shinjyo Noriko, Kido Yasutoshi, Yamamoto Nao, Yagi Kinpei, Miyoshi Hideto, Nonaka Nariaki, Katakura Ken, Kita Kiyoshi, Oku Yuzaburo

机构信息

Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

出版信息

Antimicrob Agents Chemother. 2008 Jan;52(1):164-70. doi: 10.1128/AAC.00378-07. Epub 2007 Oct 22.

Abstract

Alveolar echinococcosis, which is due to the massive growth of larval Echinococcus multilocularis, is a life-threatening parasitic zoonosis distributed widely across the northern hemisphere. Commercially available chemotherapeutic compounds have parasitostatic but not parasitocidal effects. Parasitic organisms use various energy metabolic pathways that differ greatly from those of their hosts and therefore could be promising targets for chemotherapy. The aim of this study was to characterize the mitochondrial respiratory chain of E. multilocularis, with the eventual goal of developing novel antiechinococcal compounds. Enzymatic analyses using enriched mitochondrial fractions from E. multilocularis protoscoleces revealed that the mitochondria exhibited NADH-fumarate reductase activity as the predominant enzyme activity, suggesting that the mitochondrial respiratory system of the parasite is highly adapted to anaerobic environments. High-performance liquid chromatography-mass spectrometry revealed that the primary quinone of the parasite mitochondria was rhodoquinone-10, which is commonly used as an electron mediator in anaerobic respiration by the NADH-fumarate reductase system of other eukaryotes. This also suggests that the mitochondria of E. multilocularis protoscoleces possess an anaerobic respiratory chain in which complex II of the parasite functions as a rhodoquinol-fumarate reductase. Furthermore, in vitro treatment assays using respiratory chain inhibitors against the NADH-quinone reductase activity of mitochondrial complex I demonstrated that they had a potent ability to kill protoscoleces. These results suggest that the mitochondrial respiratory chain of the parasite is a promising target for chemotherapy of alveolar echinococcosis.

摘要

泡型包虫病是由多房棘球绦虫幼虫大量增殖引起的,是一种危及生命的寄生虫人畜共患病,广泛分布于北半球。市售的化疗化合物具有抑制寄生虫生长的作用,但没有杀寄生虫的效果。寄生虫利用各种能量代谢途径,这些途径与它们的宿主有很大不同,因此可能是化疗的有希望的靶点。本研究的目的是表征多房棘球绦虫的线粒体呼吸链,最终目标是开发新型抗包虫化合物。使用从多房棘球绦虫原头蚴中富集的线粒体组分进行的酶分析表明,线粒体表现出NADH-延胡索酸还原酶活性作为主要酶活性,这表明寄生虫的线粒体呼吸系统高度适应厌氧环境。高效液相色谱-质谱分析表明,寄生虫线粒体的主要醌是玫红醌-10,它通常被其他真核生物的NADH-延胡索酸还原酶系统用作厌氧呼吸中的电子介质。这也表明多房棘球绦虫原头蚴的线粒体拥有一条厌氧呼吸链,其中寄生虫的复合物II作为玫红醌醇-延胡索酸还原酶起作用。此外,使用呼吸链抑制剂对线粒体复合物I的NADH-醌还原酶活性进行的体外处理试验表明,它们具有杀死原头蚴的强大能力。这些结果表明,寄生虫的线粒体呼吸链是泡型包虫病化疗的一个有希望的靶点。

相似文献

引用本文的文献

2
Fumarate respiration of flukes as a potential drug target.作为潜在药物靶点的吸虫的延胡索酸呼吸。
Front Cell Infect Microbiol. 2024 Jan 25;13:1302114. doi: 10.3389/fcimb.2023.1302114. eCollection 2023.
7
Dual inhibition of the energy metabolism.能量代谢的双重抑制
Front Vet Sci. 2022 Aug 5;9:981664. doi: 10.3389/fvets.2022.981664. eCollection 2022.

本文引用的文献

1
Advances in drug discovery and biochemical studies.药物发现与生化研究的进展
Trends Parasitol. 2007 May;23(5):223-9. doi: 10.1016/j.pt.2007.03.005. Epub 2007 Mar 23.
2
The pathways of energy generation in filarial parasites.丝虫寄生虫中能量产生的途径。
Parasitol Today. 1991 Jan;7(1):21-5. doi: 10.1016/0169-4758(91)90081-x.
7
Echinococcosis.棘球蚴病
Lancet. 2003 Oct 18;362(9392):1295-304. doi: 10.1016/S0140-6736(03)14573-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验