Suppr超能文献

丝状伪足和片状伪足施加的力的特性以及细胞骨架成分的参与。

Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components.

作者信息

Cojoc Dan, Difato Francesco, Ferrari Enrico, Shahapure Rajesh B, Laishram Jummi, Righi Massimo, Di Fabrizio Enzo M, Torre Vincent

机构信息

Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, Laboratorio Nazionale Tecnologie Avanzate E Nanoscienza, Area Science Park Basovizza, Trieste, Italy.

出版信息

PLoS One. 2007 Oct 24;2(10):e1072. doi: 10.1371/journal.pone.0001072.

Abstract

During neuronal differentiation, lamellipodia and filopodia explore the environment in search for the correct path to the axon's final destination. Although the motion of lamellipodia and filopodia has been characterized to an extent, little is known about the force they exert. In this study, we used optical tweezers to measure the force exerted by filopodia and lamellipodia with a millisecond temporal resolution. We found that a single filopodium exerts a force not exceeding 3 pN, whereas lamellipodia can exert a force up to 20 pN. Using metabolic inhibitors, we showed that no force is produced in the absence of actin polymerization and that development of forces larger than 3 pN requires microtubule polymerization. These results show that actin polymerization is necessary for force production and demonstrate that not only do neurons process information, but they also act on their environment exerting forces varying from tenths pN to tens of pN.

摘要

在神经元分化过程中,片状伪足和丝状伪足探索周围环境,以寻找通往轴突最终目的地的正确路径。尽管片状伪足和丝状伪足的运动在一定程度上已得到描述,但对于它们所施加的力却知之甚少。在本研究中,我们使用光镊以毫秒级的时间分辨率测量丝状伪足和片状伪足所施加的力。我们发现单个丝状伪足施加的力不超过3皮牛,而片状伪足可施加高达20皮牛的力。使用代谢抑制剂,我们表明在没有肌动蛋白聚合的情况下不会产生力,并且大于3皮牛的力的产生需要微管聚合。这些结果表明肌动蛋白聚合对于力的产生是必需的,并证明神经元不仅处理信息,而且还作用于其周围环境,施加从十分之一皮牛到几十皮牛不等的力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d89/2034605/6758868c3cf6/pone.0001072.g001.jpg

相似文献

2
The role of myosin-II in force generation of DRG filopodia and lamellipodia.
Sci Rep. 2015 Jan 19;5:7842. doi: 10.1038/srep07842.
3
Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction.
J Cell Biol. 1999 Sep 6;146(5):1097-106. doi: 10.1083/jcb.146.5.1097.
6
Comparison of the force exerted by hippocampal and DRG growth cones.
PLoS One. 2013 Aug 21;8(8):e73025. doi: 10.1371/journal.pone.0073025. eCollection 2013.
8
Force generation in lamellipodia is a probabilistic process with fast growth and retraction events.
Biophys J. 2010 Mar 17;98(6):979-88. doi: 10.1016/j.bpj.2009.11.041.
10
Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip.
Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18928-33. doi: 10.1073/pnas.1316572110. Epub 2013 Nov 6.

引用本文的文献

2
The bacterial flagellum as an object for optical trapping.
Biophys Rev. 2024 Jul 24;16(4):403-415. doi: 10.1007/s12551-024-01212-7. eCollection 2024 Aug.
3
Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond.
ACS Photonics. 2024 Mar 11;11(3):917-940. doi: 10.1021/acsphotonics.4c00064. eCollection 2024 Mar 20.
5
Crowding alters F-actin secondary structure and hydration.
Commun Biol. 2023 Sep 2;6(1):900. doi: 10.1038/s42003-023-05274-3.
7
p53 regulates the effects of DAPT on Rac1 activation and migration of non-small-cell lung cancer cells.
Heliyon. 2023 Mar 2;9(3):e14169. doi: 10.1016/j.heliyon.2023.e14169. eCollection 2023 Mar.
8
Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction.
Adv Sci (Weinh). 2023 Mar;10(9):e2204594. doi: 10.1002/advs.202204594. Epub 2023 Jan 19.
9
Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging.
Curr Biol. 2022 Oct 24;32(20):4386-4396.e3. doi: 10.1016/j.cub.2022.08.040. Epub 2022 Sep 8.
10
Precise control of microtubule disassembly in living cells.
EMBO J. 2022 Aug 1;41(15):e110472. doi: 10.15252/embj.2021110472. Epub 2022 Jun 10.

本文引用的文献

1
Interference model for back-focal-plane displacement detection in optical tweezers.
Opt Lett. 1998 Jan 1;23(1):7-9. doi: 10.1364/ol.23.000007.
2
Kinetic-structural analysis of neuronal growth cone veil motility.
J Cell Sci. 2007 Mar 15;120(Pt 6):1113-25. doi: 10.1242/jcs.03384. Epub 2007 Feb 27.
3
Polymerizing actin fibers position integrins primed to probe for adhesion sites.
Science. 2007 Feb 16;315(5814):992-5. doi: 10.1126/science.1137904.
4
Direct measurement of force generation by actin filament polymerization using an optical trap.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2181-6. doi: 10.1073/pnas.0607052104. Epub 2007 Feb 2.
5
Neuronal migration in the adult brain: are we there yet?
Nat Rev Neurosci. 2007 Feb;8(2):141-51. doi: 10.1038/nrn2074.
7
mPar6 alpha controls neuronal migration.
J Neurosci. 2006 Oct 18;26(42):10624-5. doi: 10.1523/JNEUROSCI.4060-06.2006.
8
Direct measurement of the lamellipodial protrusive force in a migrating cell.
J Cell Biol. 2006 Sep 11;174(6):767-72. doi: 10.1083/jcb.200601159.
9
Actin polymerization serves as a membrane domain switch in model lipid bilayers.
Biophys J. 2006 Dec 1;91(11):4064-70. doi: 10.1529/biophysj.106.090852. Epub 2006 Sep 8.
10
Optical trapping.
Rev Sci Instrum. 2004 Sep;75(9):2787-809. doi: 10.1063/1.1785844.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验