Stilgoe Alexander B, Favre-Bulle Itia A, Watson Mark L, Gomez-Godinez Veronica, Berns Michael W, Preece Daryl, Rubinsztein-Dunlop Halina
School of Mathematics and Physics, The University of Queensland, Brisbane, 4074, Australia.
ARC CoE for Engineered Quantum Systems, The University of Queensland, Brisbane, 4074, Australia.
ACS Photonics. 2024 Mar 11;11(3):917-940. doi: 10.1021/acsphotonics.4c00064. eCollection 2024 Mar 20.
Mechanobiology helps us to decipher cell and tissue functions by looking at changes in their mechanical properties that contribute to development, cell differentiation, physiology, and disease. Mechanobiology sits at the interface of biology, physics and engineering. One of the key technologies that enables characterization of properties of cells and tissue is microscopy. Combining microscopy with other quantitative measurement techniques such as optical tweezers and scissors, gives a very powerful tool for unraveling the intricacies of mechanobiology enabling measurement of forces, torques and displacements at play. We review the field of some light based studies of mechanobiology and optical detection of signal transduction ranging from optical micromanipulation-optical tweezers and scissors, advanced fluorescence techniques and optogenentics. In the current perspective paper, we concentrate our efforts on elucidating interesting measurements of forces, torques, positions, viscoelastic properties, and optogenetics inside and outside a cell attained when using structured light in combination with optical tweezers and scissors. We give perspective on the field concentrating on the use of structured light in imaging in combination with tweezers and scissors pointing out how novel developments in quantum imaging in combination with tweezers and scissors can bring to this fast growing field.
力学生物学通过观察细胞和组织机械特性的变化来帮助我们解读其功能,这些变化与发育、细胞分化、生理学和疾病相关。力学生物学处于生物学、物理学和工程学的交叉领域。能够表征细胞和组织特性的关键技术之一是显微镜技术。将显微镜技术与其他定量测量技术(如光镊和光剪)相结合,为揭示力学生物学的复杂性提供了一个非常强大的工具,能够测量其中的力、扭矩和位移。我们综述了一些基于光的力学生物学研究领域以及信号转导的光学检测,范围涵盖光学微操纵——光镊和光剪、先进的荧光技术和光遗传学。在当前这篇观点论文中,我们致力于阐明在结合使用结构光与光镊和光剪时,在细胞内外获得的关于力、扭矩、位置、粘弹性特性和光遗传学的有趣测量结果。我们对该领域进行展望,重点关注结构光在成像中与镊子和剪刀结合的应用,并指出量子成像与镊子和剪刀结合的新发展如何能为这个快速发展的领域带来推动。