Clapier Cedric R, Chakravarthy Srinivas, Petosa Carlo, Fernández-Tornero Carlos, Luger Karolin, Müller Christoph W
European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France.
Proteins. 2008 Apr;71(1):1-7. doi: 10.1002/prot.21720.
We determined the 2.45 A crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base-pair DNA fragment derived from human alpha-satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein-DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent-exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A-H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged.
我们确定了黑腹果蝇核小体核心颗粒的2.45埃晶体结构,并将其与非洲爪蟾与源自人类α-卫星DNA的相同147个碱基对DNA片段结合的核小体核心颗粒结构进行了比较。这两种结构之间的差异主要反映了物种间16个氨基酸的替换,其中15个位于组蛋白H2A和H2B中。其中四个涉及组蛋白尾部残基,导致蛋白质-DNA相互作用发生细微改变,体现了这些尾部的结构可塑性。在组蛋白核心区域发生的12个替换中,有五个涉及不参与颗粒内相互作用的小的、暴露于溶剂中的残基。其余七个涉及埋藏的疏水残基,并且似乎是协同进化的,以保持H2A疏水核心和H2A-H2B二聚体界面内侧链的体积。因此,除了组蛋白尾部的变化外,区分果蝇和非洲爪蟾组蛋白的氨基酸替换是以相互补偿的组合形式出现的。这突出了自脊椎动物和无脊椎动物谱系分化以来对组蛋白施加的严格进化限制。