Amann Markus, Dempsey Jerome A
The John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin Medical School, 4245 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA.
J Physiol. 2008 Jan 1;586(1):161-73. doi: 10.1113/jphysiol.2007.141838. Epub 2007 Oct 25.
We asked whether the central effects of fatiguing locomotor muscle fatigue exert an inhibitory influence on central motor drive to regulate the total degree of peripheral fatigue development. Eight cyclists performed constant-workload prefatigue trials (a) to exhaustion (83% of peak power output (W(peak)), 10 +/- 1 min; PFT(83%)), and (b) for an identical duration but at 67% W(peak) (PFT(67%)). Exercise-induced peripheral quadriceps fatigue was assessed via changes in potentiated quadriceps twitch force (DeltaQ(tw,pot)) from pre- to post-exercise in response to supra-maximal femoral nerve stimulation (DeltaQ(tw,pot)). On different days, each subject randomly performed three 5 km time trials (TTs). First, subjects repeated PFT(83%) and the TT was started 4 min later with a known level of pre-existing locomotor muscle fatigue (DeltaQ(tw,pot) -36%) (PFT(83%)-TT). Second, subjects repeated PFT(67%) and the TT was started 4 min later with a known level of pre-existing locomotor muscle fatigue (DeltaQ(tw,pot) -20%) (PFT(67%)-TT). Finally, a control TT was performed without any pre-existing level of fatigue. Central neural drive during the three TTs was estimated via quadriceps EMG. Increases in pre-existing locomotor muscle fatigue from control TT to PFT(83%)-TT resulted in significant dose-dependent changes in central motor drive (-23%), power output (-14%), and performance time (+6%) during the TTs. However, the magnitude of locomotor muscle fatigue following various TTs was not different (DeltaQ(tw,pot) of -35 to -37%, P = 0.35). We suggest that feedback from fatiguing muscle plays an important role in the determination of central motor drive and force output, so that the development of peripheral muscle fatigue is confined to a certain level.
我们探讨了疲劳性运动肌肉疲劳的中枢效应是否会对中枢运动驱动产生抑制作用,以调节外周疲劳发展的总体程度。八名自行车运动员进行了恒定工作量的疲劳前试验:(a) 至力竭(峰值功率输出 (W(peak)) 的 83%,10±1 分钟;PFT(83%)),以及 (b) 持续相同时间但为 W(peak) 的 67%(PFT(67%))。通过对超最大股神经刺激的反应,测量运动前后股四头肌增强抽搐力(DeltaQ(tw,pot))的变化,来评估运动诱发的外周股四头肌疲劳。在不同的日子里,每个受试者随机进行三次 5 公里计时赛(TTs)。首先,受试者重复 PFT(83%),并在 4 分钟后开始 TT,此时已知存在一定程度的运动肌肉疲劳(DeltaQ(tw,pot) -36%)(PFT(83%)-TT)。其次,受试者重复 PFT(67%),并在 4 分钟后开始 TT,此时已知存在一定程度的运动肌肉疲劳(DeltaQ(tw,pot) -20%)(PFT(67%)-TT)。最后,进行一次无预先疲劳水平的对照 TT。通过股四头肌肌电图估计三次 TT 期间的中枢神经驱动。从对照 TT 到 PFT(83%)-TT,预先存在的运动肌肉疲劳增加,导致 TT 期间中枢运动驱动(-23%)、功率输出(-14%)和表现时间(+6%)出现显著的剂量依赖性变化。然而,不同 TT 后运动肌肉疲劳的程度没有差异(DeltaQ(tw,pot) 为 -35% 至 -37%,P = 0.35)。我们认为,疲劳肌肉的反馈在中枢运动驱动和力量输出的决定中起重要作用,从而使外周肌肉疲劳的发展局限于一定水平。