Suppr超能文献

细胞状态转换因子和动态模式模块:发育和进化可塑性的互补介质。

Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution.

机构信息

Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.

出版信息

J Biosci. 2009 Oct;34(4):553-72. doi: 10.1007/s12038-009-0074-7.

Abstract

Ancient metazoan organisms arose from unicellular eukaryotes that had billions of years of genetic evolution behind them. The transcription factor networks present in single-celled ancestors at the origin of the Metazoa (multicellular animals) were already capable of mediating the switching of the unicellular phenotype among alternative states of gene activity in response to environmental conditions. Cell differentiation, therefore, had its roots in phenotypic plasticity, with the ancient regulatory proteins acquiring new targets over time and evolving into the "developmental transcription factors" (DTFs) of the "developmental-genetic toolkit." In contrast, the emergence of pattern formation and morphogenesis in the Metazoa had a different trajectory. Aggregation of unicellular metazoan ancestors changed the organisms' spatial scale, leading to the first "dynamical patterning module" (DPM): cell-cell adhesion. Following this, other DPMs (defined as physical forces and processes pertinent to the scale of the aggregates mobilized by a set of toolkit gene products distinct from the DTFs), transformed simple cell aggregates into hollow, multilayered, segmented, differentiated and additional complex structures, with minimal evolution of constituent genes. Like cell differentiation, therefore, metazoan morphologies also originated from plastic responses of cells and tissues. Here we describe examples of DTFs and most of the important DPMs, discussing their complementary roles in the evolution of developmental mechanisms. We also provide recently characterized examples of DTFs in cell type switching and DPMs in morphogenesis of avian limb bud mesenchyme, an embryo-derived tissue that retains a high degree of developmental plasticity.

摘要

远古后生动物起源于具有数十亿年遗传进化历史的单细胞真核生物。后生动物(多细胞动物)起源时,其单细胞祖先的转录因子网络已经能够介导单细胞表型在不同基因活性状态之间的切换,以适应环境条件。因此,细胞分化的根源在于表型可塑性,随着时间的推移,古老的调控蛋白获得了新的靶标,并进化为“发育转录因子”(DTFs)的“发育遗传工具包”。相比之下,后生动物中形态发生的出现则有不同的轨迹。单细胞后生动物祖先的聚集改变了生物体的空间尺度,导致了第一个“动态模式模块”(DPM):细胞-细胞黏附。在此之后,其他 DPM(定义为与由一组与 DTF 不同的工具箱基因产物所动员的集合相关的物理力和过程)将简单的细胞聚集转化为中空、多层、分段、分化和其他复杂结构,组成基因的进化最小。因此,像细胞分化一样,后生动物形态也起源于细胞和组织的可塑性反应。在这里,我们描述了 DTFs 和大多数重要的 DPM 的例子,讨论了它们在发育机制进化中的互补作用。我们还提供了最近在鸟类肢体芽间充质细胞类型转换中的 DTFs 和形态发生中的 DPMs 的特征化例子,肢体芽间充质是一种胚胎衍生的组织,保留了高度的发育可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验