Freeman Tom C, Goldovsky Leon, Brosch Markus, van Dongen Stijn, Mazière Pierre, Grocock Russell J, Freilich Shiri, Thornton Janet, Enright Anton J
Division of Pathway Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom.
PLoS Comput Biol. 2007 Oct;3(10):2032-42. doi: 10.1371/journal.pcbi.0030206.
Network analysis transcends conventional pairwise approaches to data analysis as the context of components in a network graph can be taken into account. Such approaches are increasingly being applied to genomics data, where functional linkages are used to connect genes or proteins. However, while microarray gene expression datasets are now abundant and of high quality, few approaches have been developed for analysis of such data in a network context. We present a novel approach for 3-D visualisation and analysis of transcriptional networks generated from microarray data. These networks consist of nodes representing transcripts connected by virtue of their expression profile similarity across multiple conditions. Analysing genome-wide gene transcription across 61 mouse tissues, we describe the unusual topography of the large and highly structured networks produced, and demonstrate how they can be used to visualise, cluster, and mine large datasets. This approach is fast, intuitive, and versatile, and allows the identification of biological relationships that may be missed by conventional analysis techniques. This work has been implemented in a freely available open-source application named BioLayout Express(3D).
网络分析超越了传统的成对数据分析方法,因为可以考虑网络图中组件的上下文。此类方法越来越多地应用于基因组学数据,其中功能联系用于连接基因或蛋白质。然而,尽管现在微阵列基因表达数据集丰富且质量高,但在网络背景下分析此类数据的方法却很少。我们提出了一种用于三维可视化和分析由微阵列数据生成的转录网络的新方法。这些网络由代表转录本的节点组成,这些节点通过它们在多种条件下的表达谱相似性相互连接。通过分析61种小鼠组织的全基因组基因转录,我们描述了所产生的大型高度结构化网络的不寻常拓扑结构,并展示了如何使用它们来可视化、聚类和挖掘大型数据集。这种方法快速、直观且通用,能够识别传统分析技术可能遗漏的生物学关系。这项工作已在一个名为BioLayout Express(3D)的免费开源应用程序中实现。