Suppr超能文献

在美国建立人乳头瘤病毒和宫颈癌模型,以分析筛查和疫苗接种效果。

Modeling human papillomavirus and cervical cancer in the United States for analyses of screening and vaccination.

机构信息

Department of Health Policy and Management, Harvard School of Public Health, Boston, USA.

出版信息

Popul Health Metr. 2007 Oct 29;5:11. doi: 10.1186/1478-7954-5-11.

Abstract

BACKGROUND

To provide quantitative insight into current U.S. policy choices for cervical cancer prevention, we developed a model of human papillomavirus (HPV) and cervical cancer, explicitly incorporating uncertainty about the natural history of disease.

METHODS

We developed a stochastic microsimulation of cervical cancer that distinguishes different HPV types by their incidence, clearance, persistence, and progression. Input parameter sets were sampled randomly from uniform distributions, and simulations undertaken with each set. Through systematic reviews and formal data synthesis, we established multiple epidemiologic targets for model calibration, including age-specific prevalence of HPV by type, age-specific prevalence of cervical intraepithelial neoplasia (CIN), HPV type distribution within CIN and cancer, and age-specific cancer incidence. For each set of sampled input parameters, likelihood-based goodness-of-fit (GOF) scores were computed based on comparisons between model-predicted outcomes and calibration targets. Using 50 randomly resampled, good-fitting parameter sets, we assessed the external consistency and face validity of the model, comparing predicted screening outcomes to independent data. To illustrate the advantage of this approach in reflecting parameter uncertainty, we used the 50 sets to project the distribution of health outcomes in U.S. women under different cervical cancer prevention strategies.

RESULTS

Approximately 200 good-fitting parameter sets were identified from 1,000,000 simulated sets. Modeled screening outcomes were externally consistent with results from multiple independent data sources. Based on 50 good-fitting parameter sets, the expected reductions in lifetime risk of cancer with annual or biennial screening were 76% (range across 50 sets: 69-82%) and 69% (60-77%), respectively. The reduction from vaccination alone was 75%, although it ranged from 60% to 88%, reflecting considerable parameter uncertainty about the natural history of type-specific HPV infection. The uncertainty surrounding the model-predicted reduction in cervical cancer incidence narrowed substantially when vaccination was combined with every-5-year screening, with a mean reduction of 89% and range of 83% to 95%.

CONCLUSION

We demonstrate an approach to parameterization, calibration and performance evaluation for a U.S. cervical cancer microsimulation model intended to provide qualitative and quantitative inputs into decisions that must be taken before long-term data on vaccination outcomes become available. This approach allows for a rigorous and comprehensive description of policy-relevant uncertainty about health outcomes under alternative cancer prevention strategies. The model provides a tool that can accommodate new information, and can be modified as needed, to iteratively assess the expected benefits, costs, and cost-effectiveness of different policies in the U.S.

摘要

背景

为了深入了解美国当前宫颈癌预防政策选择,我们建立了一个人乳头瘤病毒(HPV)和宫颈癌模型,明确纳入了疾病自然史的不确定性。

方法

我们建立了一个宫颈癌的随机微观模拟模型,根据其发病率、清除率、持续性和进展情况区分不同的 HPV 类型。输入参数集从均匀分布中随机抽样,并对每个参数集进行模拟。通过系统评价和正式数据综合,我们为模型校准建立了多个流行病学目标,包括按类型划分的特定年龄 HPV 流行率、宫颈上皮内瘤变(CIN)的特定年龄流行率、CIN 和癌症内 HPV 类型分布以及特定年龄的癌症发病率。对于每个抽样输入参数集,根据模型预测结果与校准目标的比较,计算基于似然的拟合优度(GOF)评分。使用 50 个随机重新采样的拟合良好的参数集,我们评估了模型的外部一致性和表面有效性,并将预测的筛查结果与独立数据进行了比较。为了说明这种方法在反映参数不确定性方面的优势,我们使用这 50 个参数集来预测不同宫颈癌预防策略下美国女性的健康结果分布。

结果

从 100 万个模拟参数集中确定了大约 200 个拟合良好的参数集。模型筛查结果与多个独立数据源的结果具有外部一致性。基于 50 个拟合良好的参数集,每年或每两年进行一次筛查可将终生癌症风险降低 76%(50 个参数集的范围为 69-82%)和 69%(60-77%)。单独接种疫苗的降低率为 75%,但范围为 60%-88%,反映了特定 HPV 感染自然史的参数不确定性相当大。当疫苗接种与每 5 年一次的筛查相结合时,模型预测的宫颈癌发病率降低幅度显著缩小,平均降低 89%,范围为 83%-95%。

结论

我们展示了一种针对美国宫颈癌微观模拟模型的参数化、校准和性能评估方法,旨在为在获得疫苗结果的长期数据之前必须做出的决策提供定性和定量输入。这种方法允许对替代癌症预防策略下的健康结果的政策相关不确定性进行严格和全面的描述。该模型提供了一个可以容纳新信息的工具,并可以根据需要进行修改,以迭代评估美国不同政策的预期收益、成本和成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be52/2213637/d8115a84f14a/1478-7954-5-11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验