Suppr超能文献

癌症模拟模型校准方法的范围综述

A Scoping Review on Calibration Methods for Cancer Simulation Models.

作者信息

Zhang Yichi, Lipa Nicole, Alagoz Oguzhan

机构信息

Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Med Decis Making. 2025 Aug 11:272989X251353211. doi: 10.1177/0272989X251353211.

Abstract

Calibration, a critical step in the development of simulation models, involves adjusting unobservable parameters to ensure that the outcomes of the model closely align with observed target data. This process is particularly vital in cancer simulation models with a natural history component, where direct data to inform natural history parameters are rarely available. We conducted a scoping review of studies published from 1980 to August 11, 2024, using keyword searches in PubMed and Web of Science. Eligible studies included cancer simulation models with a natural history component that used calibration methods for parameter estimation. A total of 117 studies met the inclusion criteria. Nearly all studies ( = 115) specified calibration targets, while most studies ( = 91) described the parameter search algorithms used. Goodness-of-fit metrics ( = 87), acceptance criteria ( = 53), and stopping rule ( = 46) were reported less frequently. The most commonly used calibration targets were incidence, mortality, and prevalence, typically drawn from cancer registries and observational studies. Mean squared error was the most commonly used goodness-of-fit measure. Random search was the predominant method for parameter search, followed by the Bayesian approach and the Nelder-Mead method. Despite recent advances in machine learning, such algorithms remain underutilized in the calibration of cancer simulation models. Further research is needed to compare the efficiency of different parameter search algorithms used for calibration.HighlightsThis work reviewed the literature of cancer simulation models with a natural history component and identified the calibration approaches used in these models with respect to the following attributes: cancer type, calibration target data source, calibration target type, goodness-of-fit metrics, search algorithms, acceptance criteria, stopping rule, computational time, modeling approach, and model stochasticity.Random search has been the predominant method for parameter search, followed by Bayesian approach and Nelder-Mead method.Machine learning-based algorithms, despite their fast advancement in the recent decade, have been underutilized in the cancer simulation models. Furthermore, more research is needed to compare different parameter search algorithms used for calibration.

摘要

校准是模拟模型开发中的关键步骤,涉及调整不可观测参数,以确保模型结果与观测到的目标数据紧密匹配。在具有自然史成分的癌症模拟模型中,这一过程尤为重要,因为很少有直接数据可用于确定自然史参数。我们使用PubMed和Web of Science中的关键词搜索,对1980年至2024年8月11日发表的研究进行了范围综述。符合条件的研究包括具有自然史成分且使用校准方法进行参数估计的癌症模拟模型。共有117项研究符合纳入标准。几乎所有研究(n = 115)都指定了校准目标,而大多数研究(n = 91)描述了所使用的参数搜索算法。拟合优度指标(n = 87)、接受标准(n = 53)和停止规则(n = 46)的报告频率较低。最常用的校准目标是发病率、死亡率和患病率,通常来自癌症登记处和观察性研究。均方误差是最常用的拟合优度度量。随机搜索是参数搜索的主要方法,其次是贝叶斯方法和Nelder-Mead方法。尽管机器学习最近取得了进展,但此类算法在癌症模拟模型的校准中仍未得到充分利用。需要进一步研究来比较用于校准的不同参数搜索算法的效率。

要点

这项工作回顾了具有自然史成分的癌症模拟模型的文献,并确定了这些模型在以下属性方面所使用的校准方法:癌症类型、校准目标数据源、校准目标类型、拟合优度指标、搜索算法、接受标准、停止规则、计算时间、建模方法和模型随机性。

随机搜索一直是参数搜索的主要方法,其次是贝叶斯方法和Nelder-Mead方法。基于机器学习的算法尽管在近十年中发展迅速,但在癌症模拟模型中尚未得到充分利用。此外,需要更多研究来比较用于校准的不同参数搜索算法。

相似文献

1
A Scoping Review on Calibration Methods for Cancer Simulation Models.
Med Decis Making. 2025 Aug 11:272989X251353211. doi: 10.1177/0272989X251353211.
2
A Review on Calibration Methods of Cancer Simulation Models.
medRxiv. 2024 Nov 19:2024.11.18.24317357. doi: 10.1101/2024.11.18.24317357.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
7
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.

本文引用的文献

2
The NCC mathematical modeling framework for decision-making of six major cancers.
J Natl Cancer Cent. 2022 Nov 20;3(1):35-47. doi: 10.1016/j.jncc.2022.11.002. eCollection 2023 Mar.
3
Cost-effectiveness Analysis of Colorectal Cancer Screening Strategies Using Active Learning and Monte Carlo Simulation.
Med Decis Making. 2024 Jul;44(5):554-571. doi: 10.1177/0272989X241258224. Epub 2024 Jun 22.
4
Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618. Epub 2024 Jun 10.
5
Projected effectiveness of lung cancer screening and concurrent smoking cessation support in the Netherlands.
EClinicalMedicine. 2024 Apr 8;71:102570. doi: 10.1016/j.eclinm.2024.102570. eCollection 2024 May.
7
8
Modeling Thyroid Cancer Epidemiology in the United States Using Papillary Thyroid Carcinoma Microsimulation Model.
Value Health. 2024 Mar;27(3):367-375. doi: 10.1016/j.jval.2023.12.007. Epub 2023 Dec 22.
9
Cost-Effectiveness Analysis for Therapy Sequence in Advanced Cancer: A Microsimulation Approach with Application to Metastatic Prostate Cancer.
Med Decis Making. 2023 Oct-Nov;43(7-8):949-960. doi: 10.1177/0272989X231201621. Epub 2023 Oct 9.
10
The Natural Disease Course of Pancreatic Cyst-Associated Neoplasia, Dysplasia, and Ductal Adenocarcinoma: Results of a Microsimulation Model.
Gastroenterology. 2023 Dec;165(6):1522-1532. doi: 10.1053/j.gastro.2023.08.027. Epub 2023 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验