Zhang Yichi, Lipa Nicole, Alagoz Oguzhan
Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA.
Med Decis Making. 2025 Aug 11:272989X251353211. doi: 10.1177/0272989X251353211.
Calibration, a critical step in the development of simulation models, involves adjusting unobservable parameters to ensure that the outcomes of the model closely align with observed target data. This process is particularly vital in cancer simulation models with a natural history component, where direct data to inform natural history parameters are rarely available. We conducted a scoping review of studies published from 1980 to August 11, 2024, using keyword searches in PubMed and Web of Science. Eligible studies included cancer simulation models with a natural history component that used calibration methods for parameter estimation. A total of 117 studies met the inclusion criteria. Nearly all studies ( = 115) specified calibration targets, while most studies ( = 91) described the parameter search algorithms used. Goodness-of-fit metrics ( = 87), acceptance criteria ( = 53), and stopping rule ( = 46) were reported less frequently. The most commonly used calibration targets were incidence, mortality, and prevalence, typically drawn from cancer registries and observational studies. Mean squared error was the most commonly used goodness-of-fit measure. Random search was the predominant method for parameter search, followed by the Bayesian approach and the Nelder-Mead method. Despite recent advances in machine learning, such algorithms remain underutilized in the calibration of cancer simulation models. Further research is needed to compare the efficiency of different parameter search algorithms used for calibration.HighlightsThis work reviewed the literature of cancer simulation models with a natural history component and identified the calibration approaches used in these models with respect to the following attributes: cancer type, calibration target data source, calibration target type, goodness-of-fit metrics, search algorithms, acceptance criteria, stopping rule, computational time, modeling approach, and model stochasticity.Random search has been the predominant method for parameter search, followed by Bayesian approach and Nelder-Mead method.Machine learning-based algorithms, despite their fast advancement in the recent decade, have been underutilized in the cancer simulation models. Furthermore, more research is needed to compare different parameter search algorithms used for calibration.
校准是模拟模型开发中的关键步骤,涉及调整不可观测参数,以确保模型结果与观测到的目标数据紧密匹配。在具有自然史成分的癌症模拟模型中,这一过程尤为重要,因为很少有直接数据可用于确定自然史参数。我们使用PubMed和Web of Science中的关键词搜索,对1980年至2024年8月11日发表的研究进行了范围综述。符合条件的研究包括具有自然史成分且使用校准方法进行参数估计的癌症模拟模型。共有117项研究符合纳入标准。几乎所有研究(n = 115)都指定了校准目标,而大多数研究(n = 91)描述了所使用的参数搜索算法。拟合优度指标(n = 87)、接受标准(n = 53)和停止规则(n = 46)的报告频率较低。最常用的校准目标是发病率、死亡率和患病率,通常来自癌症登记处和观察性研究。均方误差是最常用的拟合优度度量。随机搜索是参数搜索的主要方法,其次是贝叶斯方法和Nelder-Mead方法。尽管机器学习最近取得了进展,但此类算法在癌症模拟模型的校准中仍未得到充分利用。需要进一步研究来比较用于校准的不同参数搜索算法的效率。
要点
这项工作回顾了具有自然史成分的癌症模拟模型的文献,并确定了这些模型在以下属性方面所使用的校准方法:癌症类型、校准目标数据源、校准目标类型、拟合优度指标、搜索算法、接受标准、停止规则、计算时间、建模方法和模型随机性。
随机搜索一直是参数搜索的主要方法,其次是贝叶斯方法和Nelder-Mead方法。基于机器学习的算法尽管在近十年中发展迅速,但在癌症模拟模型中尚未得到充分利用。此外,需要更多研究来比较用于校准的不同参数搜索算法。