Subramanian Radhika, Gelles Jeff
Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
J Gen Physiol. 2007 Nov;130(5):445-55. doi: 10.1085/jgp.200709866.
An enzyme is frequently conceived of as having a single functional mechanism. This is particularly true for motor enzymes, where the necessity for tight coupling of mechanical and chemical cycles imposes rigid constraints on the reaction pathway. In mixtures of substrate (ATP) and an inhibitor (adenosine 5'-(beta,gamma-imido)triphosphate or AMP-PNP), single kinesin molecules move on microtubules in two distinct types of multiple-turnover "runs" that differ in their susceptibility to inhibition. Longer (less susceptible) runs are consistent with movement driven by the alternating-sites mechanism previously proposed for uninhibited kinesin. In contrast, kinesin molecules in shorter runs step with AMP-PNP continuously bound to one of the two active sites of the enzyme. Thus, in this mixture of substrate and inhibitor, kinesin can function as a motor enzyme using either of two distinct mechanisms. In one of these, the enzyme can accomplish high-duty-ratio processive movement without alternating-sites ATP hydrolysis.
酶通常被认为具有单一的功能机制。对于运动酶来说尤其如此,在运动酶中,机械循环和化学循环紧密耦合的必要性对反应途径施加了严格的限制。在底物(ATP)和抑制剂(腺苷5'-(β,γ-亚氨基)三磷酸或AMP-PNP)的混合物中,单个驱动蛋白分子在微管上以两种不同类型的多轮“运行”移动,这两种“运行”对抑制的敏感性不同。较长(较不易受抑制)的“运行”与先前为未受抑制的驱动蛋白提出的交替位点机制驱动的运动一致。相比之下,较短“运行”中的驱动蛋白分子在AMP-PNP持续结合到酶的两个活性位点之一的情况下进行步移。因此,在这种底物和抑制剂的混合物中,驱动蛋白可以使用两种不同机制中的任何一种作为运动酶发挥作用。在其中一种机制中,该酶可以在不进行交替位点ATP水解的情况下完成高占空比的持续运动。