Department of Physics, University of Chicago, Chicago, IL 60637.
James Franck Institute, University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2016708118.
Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics.
水动力理论有效地用少数宏观参数来描述非平衡多体系统。然而,从微观信息中很难确定这些参数。在活性物质中,这种挑战表现得尤为明显,因为水动力参数实际上是编码微观注入能量成分分布的场。在这里,我们使用活性向列相来证明神经网络可以描绘多个水动力参数的时空变化,并预测这些系统的混沌动力学。我们将生物丝/分子马达实验分析为微管/驱动蛋白和肌动蛋白/肌球蛋白复合物的计算机视觉问题。我们的算法可以确定活性和弹性模量如何随空间和时间变化,以及三磷酸腺苷 (ATP) 或马达浓度如何变化。唯一需要的输入是生物丝的方向,而不是更难在实验中获取的耦合速度场。我们还可以仅使用自动编码器和具有残差结构的递归神经网络的组合,根据过去的图像序列来预测这些混沌多体系统的演变。在初始条件不完全已知的现实实验设置中,我们基于物理的机器学习算法可以超越确定性模拟。我们的研究为人工智能在不同物理和生物系统中对耦合混沌场的特性和控制铺平了道路,即使在缺乏对底层动力学的了解的情况下也可以实现。