文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

健康数据可视化的任务数据分类法:针对专家和老年人的基于网络的调查。

Task-Data Taxonomy for Health Data Visualizations: Web-Based Survey With Experts and Older Adults.

作者信息

Theis Sabine, Rasche Peter Wilhelm Victor, Bröhl Christina, Wille Matthias, Mertens Alexander

机构信息

Human Factors Engineering and Ergonomics in Healthcare, Chair and Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Aachen, Germany.

出版信息

JMIR Med Inform. 2018 Jul 9;6(3):e39. doi: 10.2196/medinform.9394.


DOI:10.2196/medinform.9394
PMID:29986844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6056737/
Abstract

BACKGROUND: Increasingly, eHealth involves health data visualizations to enable users to better understand their health situation. Selecting efficient and ergonomic visualizations requires knowledge about the task that the user wants to carry out and the type of data to be displayed. Taxonomies of abstract tasks and data types bundle this knowledge in a general manner. Task-data taxonomies exist for visualization tasks and data. They also exist for eHealth tasks. However, there is currently no joint task taxonomy available for health data visualizations incorporating the perspective of the prospective users. One of the most prominent prospective user groups of eHealth are older adults, but their perspective is rarely considered when constructing tasks lists. OBJECTIVE: The aim of this study was to construct a task-data taxonomy for health data visualizations based on the opinion of older adults as prospective users of eHealth systems. eHealth experts served as a control group against the bias of lacking background knowledge. The resulting taxonomy would then be used as an orientation in system requirement analysis and empirical evaluation and to facilitate a common understanding and language in eHealth data visualization. METHODS: Answers from 98 participants (51 older adults and 47 eHealth experts) given in an online survey were quantitatively analyzed, compared between groups, and synthesized into a task-data taxonomy for health data visualizations. RESULTS: Consultation, diagnosis, mentoring, and monitoring were confirmed as relevant abstract tasks in eHealth. Experts and older adults disagreed on the importance of mentoring (χ=14.1, P=.002) and monitoring (χ=22.1, P<.001). The answers to the open questions validated the findings from the closed questions and added therapy, communication, cooperation, and quality management to the aforementioned tasks. Here, group differences in normalized code counts were identified for "monitoring" between the expert group (mean 0.18, SD 0.23) and the group of older adults (mean 0.08, SD 0.15; t=2431, P=.02). Time-dependent data was most relevant across all eHealth tasks. Finally, visualization tasks and data types were assigned to eHealth tasks by both experimental groups. CONCLUSIONS: We empirically developed a task-data taxonomy for health data visualizations with prospective users. This provides a general framework for theoretical concession and for the prioritization of user-centered system design and evaluation. At the same time, the functionality dimension of the taxonomy for telemedicine-chosen as the basis for the construction of present taxonomy-was confirmed.

摘要

背景:电子健康越来越多地涉及健康数据可视化,以使用户能够更好地了解自己的健康状况。选择高效且符合人体工程学的可视化方式需要了解用户想要执行的任务以及要显示的数据类型。抽象任务和数据类型的分类法以一种通用的方式汇总了这些知识。存在针对可视化任务和数据的任务 - 数据分类法。也存在针对电子健康任务的分类法。然而,目前尚无结合潜在用户视角的用于健康数据可视化的联合任务分类法。电子健康最突出的潜在用户群体之一是老年人,但在构建任务列表时很少考虑他们的视角。 目的:本研究的目的是基于老年人作为电子健康系统潜在用户的意见,构建一个用于健康数据可视化的任务 - 数据分类法。电子健康专家作为对照组,以避免缺乏背景知识所产生的偏差。所得的分类法随后将用作系统需求分析和实证评估的导向,并促进电子健康数据可视化方面的共同理解和语言交流。 方法:对98名参与者(51名老年人和47名电子健康专家)在在线调查中给出的答案进行定量分析,在组间进行比较,并综合成一个用于健康数据可视化的任务 - 数据分类法。 结果:咨询、诊断、指导和监测被确认为电子健康中的相关抽象任务。专家和老年人在指导(χ = 14.1,P = 0.002)和监测(χ = 22.1,P < 0.001)的重要性上存在分歧。开放性问题的答案验证了封闭性问题的结果,并在上述任务中增加了治疗、沟通、合作和质量管理。在此,专家组(均值0.18,标准差0.23)和老年人群体(均值0.08,标准差0.15;t = 2431,P = 0.02)之间在“监测”的标准化代码计数上存在组间差异。随时间变化的数据在所有电子健康任务中最为相关。最后,两个实验组都将可视化任务和数据类型分配给了电子健康任务。 结论:我们通过实证为潜在用户开发了一个用于健康数据可视化的任务 - 数据分类法。这为理论让步以及以用户为中心的系统设计和评估的优先级确定提供了一个通用框架。同时,作为本分类法构建基础的远程医疗分类法的功能维度得到了确认。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/69f95e561f26/medinform_v6i3e39_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/23deb2f86448/medinform_v6i3e39_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/d8acae48d688/medinform_v6i3e39_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/64ab460f0d62/medinform_v6i3e39_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/69f95e561f26/medinform_v6i3e39_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/23deb2f86448/medinform_v6i3e39_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/d8acae48d688/medinform_v6i3e39_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/64ab460f0d62/medinform_v6i3e39_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32b/6056737/69f95e561f26/medinform_v6i3e39_fig4.jpg

相似文献

[1]
Task-Data Taxonomy for Health Data Visualizations: Web-Based Survey With Experts and Older Adults.

JMIR Med Inform. 2018-7-9

[2]
A framework for characterizing eHealth literacy demands and barriers.

J Med Internet Res. 2011-11-17

[3]
Ill Literates or Illiterates? Investigating the eHealth Literacy of Users of Online Health Communities.

J Med Internet Res. 2017-10-4

[4]
Enhancing the Effectiveness of Consumer-Focused Health Information Technology Systems Through eHealth Literacy: A Framework for Understanding Users' Needs.

JMIR Hum Factors. 2015-5-20

[5]
Needs, barriers and facilitators of older adults towards eHealth in general practice: a qualitative study.

Prim Health Care Res Dev. 2020-12-2

[6]
eHealth Search Patterns: A Comparison of Private and Public Health Care Markets Using Online Panel Data.

J Med Internet Res. 2017-4-13

[7]
Electronic Health Use in the European Union and the Effect of Multimorbidity: Cross-Sectional Survey.

J Med Internet Res. 2018-5-3

[8]
Tailoring Persuasive Electronic Health Strategies for Older Adults on the Basis of Personal Motivation: Web-Based Survey Study.

J Med Internet Res. 2019-9-6

[9]
Testing Two Online Symptom Checkers With Vulnerable Groups: Usability Study to Improve Cognitive Accessibility of eHealth Services.

JMIR Hum Factors. 2024-3-8

[10]
Electronic Health Behaviors Among US Adults With Chronic Disease: Cross-Sectional Survey.

J Med Internet Res. 2019-3-5

引用本文的文献

[1]
Use of Creative Frameworks in Health Care to Solve Data and Information Problems: Scoping Review.

JMIR Hum Factors. 2024-9-13

[2]
Visualization Techniques of Time-Oriented Data for the Comparison of Single Patients With Multiple Patients or Cohorts: Scoping Review.

J Med Internet Res. 2022-10-24

本文引用的文献

[1]
Implications for Training on Smartphone Medication Reminder App Use by Adults With Chronic Conditions: Pilot Study Applying the Technology Acceptance Model.

JMIR Form Res. 2017-11-10

[2]
A Fully Automated Web-Based Program Improves Lifestyle Habits and HbA1c in Patients With Type 2 Diabetes and Abdominal Obesity: Randomized Trial of Patient E-Coaching Nutritional Support (The ANODE Study).

J Med Internet Res. 2017-11-8

[3]
An App to Help Young People Self-Manage When Feeling Overwhelmed (ReZone): Protocol of a Cluster Randomized Controlled Trial.

JMIR Res Protoc. 2017-11-3

[4]
Development and Validation of a Taxonomy for Characterizing Measurements in Health Self-Quantification.

J Med Internet Res. 2017-11-3

[5]
Use of the Internet and Mobile Phones for Self-Management of Severe Mental Health Problems: Qualitative Study of Staff Views.

JMIR Ment Health. 2017-11-1

[6]
The User Knows What to Call It: Incorporating Patient Voice Through User-Contributed Tags on a Participatory Platform About Health Management.

J Med Internet Res. 2017-9-7

[7]
Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease.

Sensors (Basel). 2016-6-21

[8]
Design Considerations for Patient Portal Adoption by Low-Income, Older Adults.

Proc SIGCHI Conf Hum Factor Comput Syst. 2015-4

[9]
Let Visuals Tell the Story: Medication Adherence in Patients with Type II Diabetes Captured by a Novel Ingestion Sensor Platform.

JMIR Mhealth Uhealth. 2015-12-31

[10]
A Comparison of Health Visualization Evaluation Techniques with Older Adults.

IEEE Comput Graph Appl. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索