Theis Sabine, Rasche Peter Wilhelm Victor, Bröhl Christina, Wille Matthias, Mertens Alexander
Human Factors Engineering and Ergonomics in Healthcare, Chair and Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Aachen, Germany.
JMIR Med Inform. 2018 Jul 9;6(3):e39. doi: 10.2196/medinform.9394.
BACKGROUND: Increasingly, eHealth involves health data visualizations to enable users to better understand their health situation. Selecting efficient and ergonomic visualizations requires knowledge about the task that the user wants to carry out and the type of data to be displayed. Taxonomies of abstract tasks and data types bundle this knowledge in a general manner. Task-data taxonomies exist for visualization tasks and data. They also exist for eHealth tasks. However, there is currently no joint task taxonomy available for health data visualizations incorporating the perspective of the prospective users. One of the most prominent prospective user groups of eHealth are older adults, but their perspective is rarely considered when constructing tasks lists. OBJECTIVE: The aim of this study was to construct a task-data taxonomy for health data visualizations based on the opinion of older adults as prospective users of eHealth systems. eHealth experts served as a control group against the bias of lacking background knowledge. The resulting taxonomy would then be used as an orientation in system requirement analysis and empirical evaluation and to facilitate a common understanding and language in eHealth data visualization. METHODS: Answers from 98 participants (51 older adults and 47 eHealth experts) given in an online survey were quantitatively analyzed, compared between groups, and synthesized into a task-data taxonomy for health data visualizations. RESULTS: Consultation, diagnosis, mentoring, and monitoring were confirmed as relevant abstract tasks in eHealth. Experts and older adults disagreed on the importance of mentoring (χ=14.1, P=.002) and monitoring (χ=22.1, P<.001). The answers to the open questions validated the findings from the closed questions and added therapy, communication, cooperation, and quality management to the aforementioned tasks. Here, group differences in normalized code counts were identified for "monitoring" between the expert group (mean 0.18, SD 0.23) and the group of older adults (mean 0.08, SD 0.15; t=2431, P=.02). Time-dependent data was most relevant across all eHealth tasks. Finally, visualization tasks and data types were assigned to eHealth tasks by both experimental groups. CONCLUSIONS: We empirically developed a task-data taxonomy for health data visualizations with prospective users. This provides a general framework for theoretical concession and for the prioritization of user-centered system design and evaluation. At the same time, the functionality dimension of the taxonomy for telemedicine-chosen as the basis for the construction of present taxonomy-was confirmed.
背景:电子健康越来越多地涉及健康数据可视化,以使用户能够更好地了解自己的健康状况。选择高效且符合人体工程学的可视化方式需要了解用户想要执行的任务以及要显示的数据类型。抽象任务和数据类型的分类法以一种通用的方式汇总了这些知识。存在针对可视化任务和数据的任务 - 数据分类法。也存在针对电子健康任务的分类法。然而,目前尚无结合潜在用户视角的用于健康数据可视化的联合任务分类法。电子健康最突出的潜在用户群体之一是老年人,但在构建任务列表时很少考虑他们的视角。 目的:本研究的目的是基于老年人作为电子健康系统潜在用户的意见,构建一个用于健康数据可视化的任务 - 数据分类法。电子健康专家作为对照组,以避免缺乏背景知识所产生的偏差。所得的分类法随后将用作系统需求分析和实证评估的导向,并促进电子健康数据可视化方面的共同理解和语言交流。 方法:对98名参与者(51名老年人和47名电子健康专家)在在线调查中给出的答案进行定量分析,在组间进行比较,并综合成一个用于健康数据可视化的任务 - 数据分类法。 结果:咨询、诊断、指导和监测被确认为电子健康中的相关抽象任务。专家和老年人在指导(χ = 14.1,P = 0.002)和监测(χ = 22.1,P < 0.001)的重要性上存在分歧。开放性问题的答案验证了封闭性问题的结果,并在上述任务中增加了治疗、沟通、合作和质量管理。在此,专家组(均值0.18,标准差0.23)和老年人群体(均值0.08,标准差0.15;t = 2431,P = 0.02)之间在“监测”的标准化代码计数上存在组间差异。随时间变化的数据在所有电子健康任务中最为相关。最后,两个实验组都将可视化任务和数据类型分配给了电子健康任务。 结论:我们通过实证为潜在用户开发了一个用于健康数据可视化的任务 - 数据分类法。这为理论让步以及以用户为中心的系统设计和评估的优先级确定提供了一个通用框架。同时,作为本分类法构建基础的远程医疗分类法的功能维度得到了确认。
JMIR Med Inform. 2018-7-9
J Med Internet Res. 2011-11-17
J Med Internet Res. 2017-10-4
Prim Health Care Res Dev. 2020-12-2
J Med Internet Res. 2017-4-13
J Med Internet Res. 2018-5-3
J Med Internet Res. 2019-3-5
JMIR Hum Factors. 2024-9-13
J Med Internet Res. 2017-11-3
Sensors (Basel). 2016-6-21
Proc SIGCHI Conf Hum Factor Comput Syst. 2015-4
IEEE Comput Graph Appl. 2016