McGraw Tim, Nadar Mariappan
West Virginia University, USA.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1504-11. doi: 10.1109/TVCG.2007.70597.
We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps per iteration at interactive frame rates on consumer-grade graphics hardware.
我们提出了一种在图形硬件上实现的、用于从扩散张量磁共振成像(DT-MRI)进行随机纤维束映射的方法。从模拟纤维中,我们计算出一个连通性图谱,该图谱可指示数据集中两点通过神经元纤维路径相连的概率。给出了纤维模型的贝叶斯公式,并表明反演方法可用于构建合理的连通性。介绍了此纤维模型在图形处理单元(GPU)上的实现。由于纤维路径可以相互独立地随机生成,该算法具有高度的并行性。这使我们能够利用GPU片段处理器的数据并行特性。我们还提出了一个在GPU上进行连通性计算的框架。我们的实现允许用户交互式地选择感兴趣区域,并在计算过程中观察不断演变的连通性结果。在消费级图形硬件上,以交互式帧率每次迭代随机生成超过250,000个纤维步长,展示了相关结果。