Suppr超能文献

使用并行马尔可夫链蒙特卡罗加速全局纤维束成像

Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo.

作者信息

Wu Haiyong, Chen Geng, Yang Zhongxue, Shen Dinggang, Yap Pew-Thian

机构信息

Key Laboratory of Trusted Cloud Computing and Big Data Analysis, Xiaozhuang University, Nanjing, China.

Data Processing Center, Northwestern Polytechnical University, Xi'an, China.

出版信息

Comput Diffus MRI. 2016;2016:121-130. doi: 10.1007/978-3-319-28588-7_11. Epub 2016 Apr 9.

Abstract

Global tractography estimates brain connectivity by determining the optimal configuration of signal-generating fiber segments that best describes the measured diffusion-weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinical applications. We present here a reformulation of the global tractography algorithm for fast parallel implementation amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our method is motivated by the key observation that each fiber segment is affected by a limited spatial neighborhood. That is, a fiber segment is influenced only by the fiber segments that are (or can potentially be) connected to its both ends and also by the diffusion-weighted signal in its proximity. This observation makes it possible to parallelize the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that updating of independent fiber segments can be done concurrently. The experiments show that the proposed algorithm can significantly speed up global tractography, while at the same time maintain or improve tractography performance.

摘要

全局纤维束成像通过确定能最佳描述测量的扩散加权数据的信号生成纤维段的最优配置来估计脑连接性,相较于局部贪婪方法,有望在成像噪声方面具有更好的稳定性。然而,全局纤维束成像在计算上要求极高,其所需的计算时间对于临床应用而言往往令人望而却步。我们在此提出一种全局纤维束成像算法的重新表述,以便能进行快速并行实现,适合使用多核CPU和通用GPU进行加速。我们的方法基于这样一个关键观察结果:每个纤维段仅受有限空间邻域的影响。也就是说,一个纤维段仅受与其两端相连(或可能相连)的纤维段以及其附近的扩散加权信号的影响。这一观察结果使得全局纤维束成像算法中使用的马尔可夫链蒙特卡罗(MCMC)算法能够并行化,从而可以同时更新独立的纤维段。实验表明,所提出的算法能够显著加快全局纤维束成像的速度,同时保持或提高纤维束成像的性能。

相似文献

1
Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo.
Comput Diffus MRI. 2016;2016:121-130. doi: 10.1007/978-3-319-28588-7_11. Epub 2016 Apr 9.
2
Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning.
Front Neuroinform. 2016 Jul 13;10:25. doi: 10.3389/fninf.2016.00025. eCollection 2016.
3
Fast approximate stochastic tractography.
Neuroinformatics. 2012 Jan;10(1):5-17. doi: 10.1007/s12021-011-9113-2.
4
Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs.
PLoS One. 2013 Apr 29;8(4):e61892. doi: 10.1371/journal.pone.0061892. Print 2013.
5
Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model.
Neuroimage. 2015 Dec;123:89-101. doi: 10.1016/j.neuroimage.2015.08.008. Epub 2015 Aug 10.
6
BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.
Neuroimage. 2013 Feb 1;66:426-35. doi: 10.1016/j.neuroimage.2012.10.058. Epub 2012 Oct 27.
7
Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
Med Phys. 2019 Jul;46(7):3101-3116. doi: 10.1002/mp.13555. Epub 2019 May 11.
8
Noise can speed Markov chain Monte Carlo estimation and quantum annealing.
Phys Rev E. 2019 Nov;100(5-1):053309. doi: 10.1103/PhysRevE.100.053309.
9
Global tractography with embedded anatomical priors for quantitative connectivity analysis.
Front Neurol. 2014 Nov 17;5:232. doi: 10.3389/fneur.2014.00232. eCollection 2014.

引用本文的文献

2
Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning.
Front Neuroinform. 2016 Jul 13;10:25. doi: 10.3389/fninf.2016.00025. eCollection 2016.

本文引用的文献

1
LABELING WHITE MATTER TRACTS IN HARDI BY FUSING MULTIPLE TRACT ATLASES WITH APPLICATIONS TO GENETICS.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:512-515. doi: 10.1109/ISBI.2013.6556524.
2
Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics.
Neuroimage. 2014 Oct 15;100:75-90. doi: 10.1016/j.neuroimage.2014.04.048. Epub 2014 May 9.
3
Spatial transformation of DWI data using non-negative sparse representation.
IEEE Trans Med Imaging. 2012 Nov;31(11):2035-49. doi: 10.1109/TMI.2012.2204766. Epub 2012 Jun 13.
5
Identification of MCI individuals using structural and functional connectivity networks.
Neuroimage. 2012 Feb 1;59(3):2045-56. doi: 10.1016/j.neuroimage.2011.10.015. Epub 2011 Oct 14.
6
Longitudinal tractography with application to neuronal fiber trajectory reconstruction in neonates.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):66-73. doi: 10.1007/978-3-642-23629-7_9.
7
Development trends of white matter connectivity in the first years of life.
PLoS One. 2011;6(9):e24678. doi: 10.1371/journal.pone.0024678. Epub 2011 Sep 23.
8
PopTract: population-based tractography.
IEEE Trans Med Imaging. 2011 Oct;30(10):1829-40. doi: 10.1109/TMI.2011.2154385. Epub 2011 May 12.
9
Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom.
Neuroimage. 2011 May 1;56(1):220-34. doi: 10.1016/j.neuroimage.2011.01.032. Epub 2011 Jan 20.
10
Enriched white matter connectivity networks for accurate identification of MCI patients.
Neuroimage. 2011 Feb 1;54(3):1812-22. doi: 10.1016/j.neuroimage.2010.10.026. Epub 2010 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验