Suppr超能文献

基于扩散磁共振成像的CPU和GPU贝叶斯纤维取向估计的比较

Comparison of CPU and GPU bayesian estimates of fibre orientations from diffusion MRI.

作者信息

Kim Danny H C, Williams Lynne J, Hernandez-Fernandez Moises, Bjornson Bruce H

机构信息

Brain Mapping, Neuroinformatics and Neurotechnology Laboratory, BC Children's Hospital, Vancouver, British Columbia, Canada.

BC Children's Hospital MRI Research Facility, Vancouver, British Columbia, Canada.

出版信息

PLoS One. 2022 Apr 21;17(4):e0252736. doi: 10.1371/journal.pone.0252736. eCollection 2022.

Abstract

BACKGROUND

The correct estimation of fibre orientations is a crucial step for reconstructing human brain tracts. Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques (bedpostx) is able to estimate several fibre orientations and their diffusion parameters per voxel using Markov Chain Monte Carlo (MCMC) in a whole brain diffusion MRI data, and it is capable of running on GPUs, achieving speed-up of over 100 times compared to CPUs. However, few studies have looked at whether the results from the CPU and GPU algorithms differ. In this study, we compared CPU and GPU bedpostx outputs by running multiple trials of both algorithms on the same whole brain diffusion data and compared each distribution of output using Kolmogorov-Smirnov tests.

RESULTS

We show that distributions of fibre fraction parameters and principal diffusion direction angles from bedpostx and bedpostx_gpu display few statistically significant differences in shape and are localized sparsely throughout the whole brain. Average output differences are small in magnitude compared to underlying uncertainty.

CONCLUSIONS

Despite small amount of differences in output between CPU and GPU bedpostx algorithms, results are comparable given the difference in operation order and library usage between CPU and GPU bedpostx.

摘要

背景

正确估计纤维方向是重建人类脑白质纤维束的关键步骤。使用采样技术获得的扩散参数的贝叶斯估计(bedpostx)能够在全脑扩散磁共振成像数据中使用马尔可夫链蒙特卡罗(MCMC)方法估计每个体素的多个纤维方向及其扩散参数,并且能够在图形处理器(GPU)上运行,与中央处理器(CPU)相比,速度提升超过100倍。然而,很少有研究探讨CPU和GPU算法的结果是否存在差异。在本研究中,我们通过在相同的全脑扩散数据上对两种算法进行多次试验来比较CPU和GPU的bedpostx输出,并使用柯尔莫哥洛夫-斯米尔诺夫检验比较每个输出分布。

结果

我们发现,bedpostx和bedpostx_gpu的纤维分数参数和主扩散方向角的分布在形状上几乎没有统计学上的显著差异,并且在整个大脑中稀疏分布。与潜在的不确定性相比,平均输出差异在量级上较小。

结论

尽管CPU和GPU的bedpostx算法在输出上存在少量差异,但考虑到CPU和GPU的bedpostx在操作顺序和库使用上的差异,结果具有可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/593b/9023062/d6248ab22197/pone.0252736.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验